
Lesson 1 : The expanding (Newtonian)
universe

Notes from Prof. Susskind video lectures publicly available
on YouTube
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Introduction

Cosmology is a very old subject. It goes back thousands of
years in the past to the Babylonians and the Greeks. But
we are not going to concern ourselves with the cosmological
views of Antiquity. We shall start sometime in the second
quarter of the twentieth century when Hubble 1 discovered
that the universe is expanding.

Despite its ancient origin, the science of cosmology, as we
know it today, is fairly recent. It even dates to well after
Hubble. The discovery in 1964 of the three degree micro-
wave radiation, also called cosmic microwave background
(CMB), is its real beginning. The CMB was rapidly inter-
preted as a remnant of the Big Bang, which was itself first
proposed in the nineteen twenties.

Before that, cosmology was in a certain sense less like phy-
sics and more like a natural science. Naturalists study this
kind of things, that kind of things. They find a funny star
over here, a galaxy that looks weird over there, and so forth.
They classify their observations, name them, measure some
characteristics about them.

The accuracy with which these things were known was so
poor that it was very difficult to build significant physics
from the observations. To be true, physicists were involved,
however, because many of the things that astronomers ob-
serve are of course physical systems. They have momentum,
energy. They have all the things that physical systems have.
There is chemicals out there, so physical chemists were in-
volved. There were sets of equations attempting to describe

1. Edwin Hubble (1889 – 1953), American astronomer.
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and explain the universe of course. But they were wrong.

Right and accurate equations which satisfactorily agree with
observations, and have predictive power, are relatively new.
They span no more than Professor Susskind’s career in phy-
sics, which is about fifty years. And that is what we are
going to study in this course.

We will study the universe as a system. In other words we
will describe it and predict its behavior with equations. If
you don’t like equations you hold the wrong book in your
hands.

Isotropic and homogeneous universe

As always in physics, we start with observations. The first
observation that we shall use may not be absolutely true.
But it looks like it is approximately true. It is that, viewed
from where we stand, the universe is isotropic.

By that we mean that in any direction we look, the universe
looks roughly the same. It displays some spherical symme-
try. Of course, if you look right at a star, it does not look
exactly the same as if you look a small angle away where
you see no star. But on the whole, averaging over patches
in the sky and looking out far enough, so that we get away
from the immediate foreground of our own galaxy, the uni-
verse looks pretty much the same in every direction. That
is the meaning of being isotropic.
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This leads to the next step in reasoning. If the universe
is isotropic around us – with one exception that we shall
see in a moment – then we can bet with a high degree of
confidence that it is also pretty close to being homogeneous.
This is stronger than being isotropic. Homogeneous means
that it is the same in every place – again of course after
some averaging. If you went out to, say, sixteen galaxies
away from the Earth, and you looked around, what you
would see would be pretty much the same as what we see
from where we are.

Figure 1 : Isotropic distribution of galaxies around the Earth,
with spherical symmetry but a priori not necessarily homoge-
neity.

Why does being isotropic – which means the same in every
direction – suggest that, more than isotropic, it is homoge-
neous ? The argument is very simple. Imagine that there is
some distribution of galaxies as shown is figure 1.

Before developing the argument, let’s remark by the way
that at least in the first part of our study, it does not mat-

4



ter whether we call them galaxies or particles. For all prac-
tical purposes, in the first lessons, they are effectively just
point masses distributed througout space in the universe.
To some extent – that we will qualify in a moment – we can
think of them like being the molecules of a gas in a large
vessel.

It is useful to have some numbers in mind too. Within what
we can see, there are about a hundred billion galaxies in the
universe, that is 1011 galaxies that can in theory be seen by
astronomers with their telescopes, be it in the visual elec-
tromagnetic range or in another range. And each galaxy
comprises about 1011 stars. Altogether we are speaking of
1022 stars. If you remember from your chemistry course that
Avogadro’s number is approximately 6 x 1023, we are tal-
king about an order of magnitude of one mole of stars.

So why should the universe be homogeneous ? The simple
reasoning goes like this : if viewed from point A, say the
Earth, the universe was isotropic but not homogeneous, it
would display some sort of rings or shells of matter like the
rings of an onion centered at A. But then, viewed from a
point B elsewhere in the universe, it would not look like
the rings of an onion centered at B too. So either of two
configurations are possible :

a) By accident, or design, we happen to be at the center
of the universe, and it looks isotropic for us but not
for other people in the universe.

b) It looks isotropic for anyone in the universe, then
the only possibility is that it is homogeneous.

Therefore if we reject the idea of being at the center of
the universe, as astronomers and physicists do, it must be
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homogeneous.

This homogeneity of course is on average. The same can be
said of the air in the room : the density of air is uniform, but
that is only true at the scale of a micrometer or more. At
the molecular scale, there are fluctuations, places with more
molecules, places with less, if only because at a molecule
there is a molecule, and next to it there is none. Moreover
molecules of oxygen or nitrogen move around incessantly.
At room temperature, the average speed of a nitrogen mo-
lecule is about 500 meters per second. We shall see that for
galaxies however the story is different. They don’t skitter
around in the universe like molecules, but seem to follow an
organized grand movement which we shall study in depth.

The homogeneity of the universe is called the cosmologi-
cal principle. This leads some people, when asked why the
universe is homogeneous, to answer : but it is a principle !
Remember, however, that it is true in last resort because
isotropy has been observed to some degree of approxima-
tion and then a simple reasoning leads to homogeneity.

In certain scientific media some astronomers claim that
there are structures out there which stretch over very big re-
gions of the visible universe and contradict the cosmological
principle. I don’t know how to evaluate these claims. But
what is certainly true is that the idea of complete unifor-
mity is not exact. As we already pointed out, just the fact
that there are galaxies means it is not exactly the same
everywhere. In fact there are clusters of galaxies and su-
perclusters of galaxies. So it appears that it is not really
homogeneous. It tends to come in some sort of lumps.
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But on some big enough scale, like a billion light years
roughly, maybe a little less, if you average over that much,
the universe seems homogeneous. So that will be our first
basic assumption.

A moving grid to track galaxies

The initial model we shall construct is no longer accepted
as is, today, at the beginning of the XXIst century. But it is
a useful stepping stone in our study, because it is the first
model based on observations and real physics. And it clari-
fies things a lot. So let’s go back a few decades to sometime
between the forties and the sixties.

The idea of a cosmological principle was itself put forward
earlier, but at that time it was not based on observations
and people had not any real right to put it forward. When it
first appeared it was indeed only a principle. But then, with
more and more astronomical investigations, it became a
model stemming from observations. And finally the cosmic
microwave background discovered in 1964 really nailed it.

The universe we are going to model is formed of galaxies
that we can assimilate with particles in a homogeneous gas.
Each galaxy on the whole is not electrically charged. It is
electrically neutral. But it is not gravitationally neutral. So
galaxies interact through Newtonian gravity and that is the
only important force on big enough scale.

Gravity is pulling all the stuff together or is doing some-
thing to it. But it is a little bit confusing. Pick a galaxy A
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in our uniform universe, see figure 2. What happens to it ?
What forces are exerted on it ? Does it accelerate in some
direction ? But everything is homogeneous, so where does
it move to ?

We can introduce an origin and perpendicular axes. And
for simplicity let’s put ourselves at the origin O.

Figure 2 : Reference frame in a uniform universe. For conve-
nience, we represent a two-dimensional world, but think of it in
three dimensions. In which direction is A pulled ?

We want to figure out the movement of any galaxy A. It
looks like A should not go in any direction in particular.
Should it stay where it is ? The natural thing to guess, it
seems, is that the universe should be just static. But that
is wrong.

It is the objective of this first lesson to describe how a ho-
mogeneous universe must necessarily evolve with time. We
are going to work out the actual Newtonian equations of
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cosmology.

You may have heard that the model of an expanding uni-
verse somehow fits together especially well, and that it
wasn’t really understood until Eintein’s general relativity
came along. However, the idea that it is general relativity
which made it possible to construct the model of an expan-
ding universe is simply false.

There is indeed a coincidence of dates : general relativity
was built between 1907 and 1915 – see volume 4 of the col-
lection The Theoretical Minimum devoted to it – and the
model of an expanding universe was first proposed shortly
afterwards in the nineteen twenties. But Newton could have
built the model of the expanding universe.

Since Newton didn’t do it, we are going to do it here the
way Newton should have done it, if only he had pushed a
little further the consequences of his theory of gravitation.

To begin with, we shall introduce a set of coordinates with
the reference frame shown in figure 2. But there will be an
astute twist. They won’t be classical static Euclidean co-
ordinates, corresponding to fixed distances on the axes as
is usually done, which would enable us to follow the move-
ment of galaxies through the evolution over time of their
coordinates.

The coordinates which we introduce are evolving with time,
in such a way that the positions of the galaxies, on average,
don’t move with respect to the coordinates.
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Figure 3 : Fictitious grid of coordinates following in unisson the
expanding, or contracting, universe. The two galaxies shown re-
main at the same lattice points. Their grid-distance remains the
same, but their real distance may evolve with time.

The lattice points always go through the same galaxies. In
other words, the galaxies in the universe provide a grid.
If the galaxies are moving relative to each other, perhaps
away from each other or closer to each other, then the grid
moves with them.

That this is possible is ultimately justified by observation.
When we look unto the heavens, galaxies appear to move
in a nice, uniform, coherent way. You can think of them
as the raisins in an expanding, or contracting, cake in the
owen. They move in unisson. Of course this is on average.
Galaxies may move locally from their position on the mo-
ving grid, but observation show that, unlike the movement
of molecules in a gas, it is a minor secondary movement
compared to the general one. On average galaxies are mo-
ving very coherently exactly as if they were embedded in
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a grid, with, as said, the grid perhaps expanding, perhaps
contracting – we will come to that – but with the whole
grid being sort of frozen with respect to the galaxies.

We choose coordinates, X, Y and Z for our grid. Notice
that they are not measuring length because the length of
the grid cell may change with time. Although not strictly
necessary until later in the reasoning – when we talk about
Newton –, we may also think of an origin, for instance the
position of our galaxy in the universe. As usual in our fi-
gures, for simplicity, we represent the universe with only
two dimensions, but we mean three.

Thus we have labelled the galaxies by where they are in the
grid. And now we can ask some more questions. Let’s start
with two points separated by a value ∆X on the grid, for
instance the two points shown on figure 3. How far apart
are they ?

We don’t know yet how far apart they are. But we are going
to postulate that the distance between them – the actual
distance in meters or in some physical unit that we measure
with a ruler, it could be a light year on a side, it could be
a million light years on a side – is proportional to ∆X. It
is ∆X times a parameter a which does not depend on the
position on the grid. It is called the scale parameter.

D = a ∆X (1)

The scale parameter a, which by hypothesis is the same
for the whole universe, may or may not be a constant with
time too. If it were constant with time, then the distance
between galaxies fixed in the grid would stay constant over
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time. But it may also be time dependent. So let’s allow
that :

D = a(t) ∆X (2)

Now let’s write the formula for the actual distance DAB

between any two galaxies, figure 4. We apply Pythagoras
theorem to the grid coordinates and multiply by the scale
parameter.

Figure 4 : Calculation of the distance DAB between two galaxies.

This yields

DAB = a(t)
√

(∆X)2 + (∆Y )2 + (∆Z)2 (3)

In other words, we measure the distance along the grid in
grid units, and then multiply it by a(t) to find the actual
physical distance between the two points.
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Let’s stress that a priori a(t) may or may not be constant
in time. But of course in reality it is not. If it were constant
in time that would mean literally that the galaxies were
just frozen in space and did not move. But that is not what
we observe. We see that they are moving apart from each
other, in other words that the universe is expanding.

Let us calculate the velocity between galaxy A and galaxy
B. We know the real distance between A and B. It is given
by equation (3). For simplicity let’s just work with the for-
mula in one dimension, already seen in equation (2), which
we rewrite below more explicitely

DAB = a(t) ∆ABX (4)

This way we don’t have to worry about Pythagoras theo-
rem. It does not really make any difference.

Equation (4) gives us the distance between A and B. What
is the relative velocity between the two galaxies ? It is just
the time derivative of the disance. And since ∆ABX is fixed,
the only element which varies in the formula is a(t). Using
the usual notation with a dot for the time derivative, we
write

VAB = ȧ(t) ∆ABX (5)

Now we can compute the ratio of the relative velocity to
the distance. The term ∆ABX nicely cancels, and we get

VAB
DAB

=
ȧ(t)

a(t)
(6)
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Observe that this ratio does not depend on which pair of
galaxies A and B we choose. It is true for every pair, no
matter how far apart they are, or how close, and no matter
in which direction the segment that links them is oriented.
The ratio of the velocity to the distance, ȧ/a, has a name :
it is called the Hubble constant, denoted H.

H =
ȧ(t)

a(t)
(7)

The term Hubble constant is a bit of a misnomer, because
it has no particular reason to be a constant 2. It depends
on the parameter t. Only if the time cancelled out in equa-
tion (7) would H be a genuine constant. In fact, we deduce
from observations that H is not a constant. But what is
important to remember is that it is independent of ∆ABX.
It does not matter where you are, which pair of galaxies
you are talking about, whether they are close to each other
or far apart.

A better name is Hubble parameter, or Hubble function. And
a better notation is H(t). In fact, when we speak of the
Hubble constant, we usually mean its value today.

To summarize, the Hubble law can be written

V = H D (8)

It is valid for any pair of galaxies in the universe. And H
depends on time.

2. When a function depends a priori on two variables, to say that
it is a constant or not is ambiguous. It may be constant in one and
variable in the other. In fact H is constant in space but not in time.
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This law is nothing more than a simple consequence of the
initial observation that galaxies in the universe stay nicely
homogeneously distributed and don’t move much from their
position on a fictitious grid – which itself may move, and
in fact it does. As some witty person once remarked, you
should not be surprised that the farthest horse goes the fas-
test.

Those are the facts that Hubble discovered in the nineteen
twenties and nineteen thirties. And from them theoretical
cosmologists had something to work with.

Let’s say a few more things about this simple model of the
universe.

What about the mass within a region ? Consider a region
of size ∆X ∆Y ∆Z, and let’s take it big enough so that we
can average over the small scale structure. How much mass
is in there ?

We readily see that the amount of mass that is in there
is proportional to ∆X ∆Y ∆Z. The bigger the region, the
more mass. And even though the volume changes with time,
the amount of mass in it does not. Let’s introduce the mea-
sure ν = the amount of mass per unit volume of the grid,
that is the volume not being measured in cubic metres, but
being measured in X, Y and Z, which are the labels on the
grid. Thus in a given region of volume ∆X ∆Y ∆Z, we can
write the mass as

M = ν ∆X ∆Y ∆Z (9)

On the other hand, what is the actual volume V of that
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region ? It is not ∆X ∆Y ∆Z because the three sides vary
with time. We have to take into account the scale parameter
a(t) three times, once for each dimension :

V = a3 ∆X ∆Y ∆Z (10)

Now we can write a formula for the density of mass. We
mean the actual physical density : how much mass there is
per cubic kilometer, or cubic light-year or whatever units
we use. We haven’t specified units yet. Later on we will
specify some. For the time being, the International System
of Units, meters, kilograms and seconds, is fine. What is the
density ? It is the number of kilograms per cubic meters,
that is the ratio of the mass to the volume. The standard
notation for density is ρ. From equations (9) and (10) we
readily calculate that

ρ =
ν

a3
(11)

Let’s repeat that the amount of mass in each grid-cell in
figure 4 stays fixed. Why ? Because the galaxies move with
the grid. So the amount of mass of a given region of the
grid stays the same. It is just something we called ν (the
Greek letter nu) times the "grid-volume" of the cell, which
is 1 if ∆X = ∆Y = ∆Z = 1.

Therefore, if a changes with time, so does ρ. For instance if
a(t) increases then ρ(t) decreases. Equation (11) is an im-
portant formula which we will use from time to time.

So far we haven’t done anything that the Greeks themselves
couldn’t have done. Euclid could have done those calcula-
tions. We did not need Newton yet. But now enters Isaac
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Newton.

Introducing Newton’s gravitation

We shall look at the effect of Newton’s gravitation on the
universe we just modeled. As the reader knows, Newton was
a very self-centered person, so it is natural that he choose
the coordinates X, Y and Z of the grid, so that he be at
the center of the universe, in other words at the origin of
the grid, figure 5.

Figure 5 : Calculation of the effect of gravity on galaxy A.

Actually we know, and Newton knew, that we would get
the same equations of motion wherever we place the origin
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and orient the axes 3. But there is nothing wrong with pla-
cing ourselves at the center of the grid.

Moreover, Newton would also say : I’m not moving, I’m
standing still. So, for mathematical purposes, Newton is at
rest at the center of the universe, at point O in figure 5.

Newton looks at a distant galaxy A. And he wants to know
how that galaxy moves. Well, that galaxy moves under the
assumptions of Newton’s equations. They say that every-
thing gravitates with everything else. But there is some-
thing special about Newton’s equations. There is a very
useful theorem. In fact it is due to Newton too.

Newton’s theorem says this : in a frame of reference where
everything is isotropic with respect to the origin – it doesn’t
even have to be homogeneous –, if we want to know what
is the gravitational force exerted on a particle A of mass
m, then draw a sphere centered at the origin and going
through the particle as shown in figure 5. Then take all of
the mass M within the sphere and pretend that it is just
sitting at the origin. And ignore all the mass in the universe
farther away than A from the origin because its net force
on A is null. Then the force exerted on A can be calcula-
ted as the force due to a unique point massM located at O.

It is thanks to this fact that we can sit where we are and be
only subject to the pulling force of the Earth as if it was all
concentrated at its center, 6000 km below us, and not feel

3. What is more, according to Galileo’s or Newton’s relativiy prin-
ciple two coordinate systems may move with constant velocity with
respect to each other and remain suitable. However they cannot ro-
tate with an angular velocity with respect to each other. And, anyway,
here we want the location where we are to be the origin.
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at all the immense masses, much more important than that
of the Earth, that are out there in the universe and pulling
at us too, but with a null net effect. Such calculations of
course are frame dependent. We took a frame of reference
with the center of the Earth as the origin. We could place
the origin elsewhere, at us for instance, but then we would
have to be careful that things are not isotropic around us.
And a slight variant of Newton’s theorem would then have
to be used.

Let’s call D the actual distance between A and the origin
O. If the grid-coordinates of A are X, Y and Z, then

D = a(t)
√
X2 + Y 2 + Z2 (12)

To make formulas lighter, let define R as
√
X2 + Y 2 + Z2.

R is not measured in meters, it just comes from Pythagoras
theorem applied to "grid-distances".

Newton’s equations are about forces and accelerations. So
we want to express the acceleration of the galaxy A relative
to the origin. First of all, the velocity is

Ḋ = ȧ(t) R (13)

Then the acceleration is

D̈ = ä(t) R (14)

We need not worry about the derivatives of R with respect
to time, because R is fixed. That is the nice thing about
the fictitious moving grid and the scale parameter a(t). The
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scale parameter takes care of all the time variability of ac-
tual distances. The "grid-distances" don’t change.

Now we can write Newton’s equation relating force, mass
and acceleration, using Newton’s law of gravitation for the
force

m D̈ = −mMG

D2
(15)

G is Newton’s constant, equal to 6, 67 x 1011 m3/kg s2. And
the minus sign means that the force is attractive, pulling
A toward the origin. That is the convention : force pulling
in is counted as negative ; force pushing out is counted as
positive. To obtain the acceleration due to gravity, just drop
the factor m on each side.

D̈ = −MG

D2
(16)

This is, in the frame of reference we chose, the acceleration
of galaxy A due to gravity. It had better be equal to that
which we obtained in equation (14). So we reach

−MG

D2
= ä(t) R (16)

We are just pushing the equations. God knows where they
will take us. We are following our nose doing the maths.

That is always how we physicists work : we start out
with some physical principles, we write down the equa-
tions, then we blindly follow them for a while using our
math toolbox, until we need to pause and think again.
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So at present we are on autopilot, just doing equations.

Let’s rewrite equation (16), plugging-in the formula we got
for D from equation (12) :

ä(t) R = − MG

a(t)2 R2
(17)

At some point we might actually reach something that looks
interesting. At the moment, we keep trudging through equa-
tions.

Let’s drop the t parameter in the notations, keeping in mind
that a depends on time. Furthermore, let’s divide both sides
by a and by R

ä

a
= − MG

a3 R3
(18)

Of course, I secretely know where I’m going. You may have
guessed too : a3R3 is related to the volume of the sphere. So
we want to make it appear in the equation, hoping that we
will reach a nice formula, easy to interpret and remember.

The volume of a sphere of radius aR is 4
3πa

3R3. Therefore
on the right hand side of equation (18) we multiply upstairs
and downstairs by 4

3π. If we denote by V the volume of the
sphere of radius aR, we get

ä

a
= − 4π

3

MG

V
(19)

Now we haveM/V in the formula. What isM/V ? It is the
density, the quantity of mass per actual volume, which we
called ρ. Hence we have
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ä

a
= − 4π

3
G ρ (20)

This is a nice equation. Notice that it does not depend on
R anymore. If we know what the density of the universe is
– and the density of the universe does not depend on where
we are – we can use this equation anywhere. Equation (20)
is true for the entire universe, for any region, any galaxy
no matter how far away. Had we considered another galaxy
or another origin, in figure 5, for our reasoning and calcu-
lations, we would have gotten the same equation.

That equation (20) does not depend on R is of course a good
thing, because if we want to think of a(t) as a parameter
which doesn’t depend on where we are in the universe, then
R had better drop out.

So Newton confirms what we might have expected, that the
equation for a(t) is a universal equation for all galaxies.

Notice that to do the calculations we have been using one
frame of reference, but then it turned out, satisfactorily,
that the choice of which frame of reference to use was irrele-
vant 4. Secondly, and more importantly, all the calculations
and the results rest heavily on the fact that the universe
is assumed to be homogeneous. The density ρ does change

4. We chose to place ourselves at the center of the frame of refe-
rence because it simplified the calculations. Similarly, when studying
the movement of the solar planets, we choose a reference frame with
the Sun at the origin. That way we obtain simple equations of ellipses.
We could use another frame of reference to solve the problem. The cal-
culations and formulas would be quite a bit more intricate, but the
end results, that is the movements, would be the same.
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with time, but it does not change with space.

Equation (20) is a central fundamental equation of cosmo-
logy. It is a differential equation for how a(t) changes with
time.

There is a number of consequences to look at. But the first
interesting thing to observe is that it is impossible to have
a universe which is static. Only if ρ(t) = 0 for all t, that
is only if the universe is empty, can the time derivative
of a and its second time derivative be zero, and can the
universe be static. But of course ρ is never zero, therefore
the universe must have a time evolution. We derived the
fact that the universe is not static.

Friedmann’s equation

Our next goal is to figure out the average movement of ga-
laxies in the universe, that is to solve equation (20). A first
thing we can do is to replace ρ by an expression involving ν.
Unlike ρ, the density ν is literally a constant in space and
time. Remember that ν is the mass of galaxies per unit of
"grid-volume" – a volume with one unit of grid coordinate
on each side –, which does not change with time because
the galaxies are frozen in the moving grid. While ρ is the ac-
tual density, that is the mass per actual volume. The actual
volume of a cubic region of grid side one is a3.

ρ =
ν

a3

Plugging this in equation (20), we get
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ä

a
= − 4π G ν

3 a3
(21)

Notice that the presence of ä on the left-hand side is not
surprising, because Newton’s equations are about accele-
ration. And everything on the right-hand side of equation
(21) is a constant except 1/a3. It is a differential equation
for the time evolution of the scale factor a, or a(t).

It was discovered by Friedmann 5 in the context of his work
on the general theory of relativity. The one that usually
bears his name however is a variant of it that we will derive
below, equation (30).

Equation (21) is consistent with general relativity. Einstein
could have derived it, and in fact should have done so. But
there is nothing in it that is not just classical Newtonian
mechanics.

The equation discovered by Friedmann does not tell us if
the universe is expanding or contracting because it does say
anything about ȧ. That depends on the initial conditions,
just like Newton’s equation for the movement of a stone
in the air does not tell us whether it is going upward or
downward.

5. Alexander Friedmann (1888 – 1925), Russian physicist and ma-
thematician
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Figure 6 : Movement of a stone in the air.

Before pursuing our study of the movement of galaxies in
the universe, let’s examine for a moment the movement of
a stone in the vicinity of the Earth, figure 6. If we call x the
height of the stone above the Earth, it satisfies the following
equation

ẍ = − MG

x2
(22)

This equation tells us that the stone is accelerating toward
the Earth. It is the consequence of the minus sign. But whe-
ther it is moving away from the Earth or toward the Earth
is a question of velocity not acceleration. Is the velocity to
the right or to the left ?

We can imagine the beginning of the experiment – that is
the initial conditions. Someone located at height x0 grabs
the stone and throws it away from the Earth. Then it will
have a positive velocity. We can also imagine the same per-
son throwing the stone in the other direction, or just re-
leasing it. In those cases x will immediately be decreasing.
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But the acceleration will be the same. In either case it is
the Earth gravity.

There are three possibilities :

a) The stone begins to go up, but after a while turns
around and then falls toward the Earth.

b) The stone begins to fall right away.

c) At the outset the stone is thrown away from the
Earth so forcefully that it is given the escape velo-
city. It starts going up, and never returns.

The formula for the escape velocity is given in equation (25)
below. It depends on the initial distance from the Earth cen-
ter. At the surface of the Earth its value is 40 270 km/h,
or 11.2 meters per second.

The same phenomenon happens with the movement of ga-
laxies. Friedmann’s equation does not tell us whether the
universe is expanding or contracting, but it tells us that
the second derivative of a is negative. So it means – in this
simple model – that even if the universe is expanding, it
tends to slow down. If it is contracting, it tends to speed
up its contraction.

There is also an analog here of whether we are above or
below the escape velocity. We will come to it.

But, first of all, let’s stress that we are investigating a clas-
sical model built in the nineteen twenties, and that Newton
himself could have built. It is what all cosmologists thought
was the right thing to do until about the end of the 20th
century. It could have been called the "standard model" of
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cosmololy, or close to it.

Since then astronomers discovered that the expansion of the
universe is accelerating, whereas equation (21) describes a
decelerating universe. So there must be some other terms
in Friedmann’s equation. And indeed we will introduce se-
veral more terms. Some parts will have to do with Einstein.

Let’s go again to just particles, rocks, stones thrown upward
from the surface of the Earth. As we saw, the equations are
very similar. We shall examine them for a while and take
home a couple of lessons. We represent again the Earth,
figure 7, and we might as well think of it as a point because
Newton proved the theorem that says that, when looking
at its gravitational effect on things not inside the Earth, we
could think of it as a point.

Figure 7 : The Earth, as a point mass, and a particle outside the
Earth. They are separated by a distance x function of time t.

The equation of motion of the particle is Newton’s equa-
tion F = mẍ. But there is actually a more useful version
of Newton’s equation which is equivalent. It is the equa-
tion expressing energy conservation. Let’s write down the
energy of the particle on figure 7. It is its kinetic energy
plus its potential energy.
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The kinetic energy is

1

2
mẋ2 (23)

And the potential energy is

−mMG

x
(24)

That may come as a surprise, but the sum of the two terms
can be positive, null or negative. The total energy does not
have to be positive. Only the kinetic energy does. Remem-
ber that the potential energy is defined up to an additive
constant. We can make it zero wherever we choose, at the
surface of the Earth, or at infinity for instance, see volume 1
of the collection The Theoretical Minimum. In the above
formula (24), the potential energy is zero at infinity. At
any finite distance from the Earth it is negative.

Then suppose that the particle shown on figure 7 is at rest
at some time t0. We don’t know how it got there. It does
not concern us. It is an initial condition : t = t0, x = x0 and
ẋ0 = 0. At time t0 its kinetic energy is zero, its potential
energy is negative, therefore in that case its total energy is
negative. And as we know it will stay so, because in this
system the total energy is constant.

The total energy can also be positive. Suppose we now take
the same particle at time t0 at the same position but im-
part it an initial velocity. If the velocity is big enough then
it can outweigh the potential energy and the total energy
be positive. Again, as said, since it is a conserved quantity,
it will stay positive.
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If at the beginning the particle is thrown away from the
Earth strongly enough and its total energy is positive, then
it cannot turn around. Why ? Because if it turned around,
at the turning point the kinetic energy would be zero, and
the potential energy would be negative, therefore the total
energy would be negative. But it started positive and it is
a conserved quantity.

Therefore if the energy is positive the particle doesn’t turn
around. Conversely, if it turns around the particle’s total
energy is negative. The case energy = 0 is some sort of
edge of the parameter space.

If the total energy is positive the particle just keeps going
and going without ever stopping, which means it escapes.
If the energy is zero that is exactly the escape velocity. We
will ask later whether it escapes or not if the total energy
is exactly at zero.

What is the escape velocity ? It is the positive value of v
satisfying the following equation

1

2
mv2 − mMG

x
= 0

or equivalently

v =

√
2MG

x
(25)

It depends on x. And if the particle is given the escape ve-
locity at time t0 and position x0, it will move away from the
Earth in such a way that at any x it will be at the escape
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velocity for that x.

In exactly the same manner, the universe can be above the
escape velocity, below the escape velocity, or at the escape
velocity. What it means is this :

a) If the universe is above escape velocity, initially at
some point the outward expansion was large enough
that it will never turn around.

b) If it is below the escape velocity, and it is at present
expanding, then at some future time the universe
will turn around and begin to contract.

c) If it is at the escape velocity, we are again at a kind
of edge point of the parameter space.

The escape velocity is also the velocity at which the total
energy is equal to 0.

Let’s now return to the motion of all the galaxies, and
concentrate on one of them, for instance galaxy A shown in
figure 5. As usual we think of it as a particle. Even though
it is one of the myriad galaxies of the universe, for all prac-
tical purposes all this particle knows is that it is moving in
the gravitational field of a point mass M at the center O.

Thus, for all practical purposes too, the problem of the ex-
panding universe can be replaced by the problem we just
analyzed of a particle moving in the gravitational field of
the Earth, figures 6 and 7. It is exactly the same problem.

Let’s work out the energetics again : the kinetic and the po-
tential energy of the galaxy, and keep in mind that the sum
conserved. Equations (23), (24) and (25), that we wrote be-
fore, still hold, except that the distance between galaxy A
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and O is now aR instead of x. And v is ȧR. Remember
that R is fixed because it is the grid-coordinate of A and
the galaxies and the grid move together. Said another way,
they don’t move with respect to each other ; they expand
or contract together.

In Newton’s frame of reference, the kinetic energy of galaxy
A is analogous to formula (23). It is now

1

2
m ȧ2R2 (26)

And the potential energy is analogous to formula (24) :

−mMG

aR
(27)

The sum of these two terms is the total energy correspon-
ding to A.

Let’s do the case where the total energy is exactly equal to 0.
That is let’s find out what is the function a(t) in that case.
The other cases are just as easy. They are left as exercises
for the reader.

In the case we are considering, the universe is just on the
edge. A priori it is not clear yet whether it will turn around
and go back or it will keep going, as we saw for the stone
thrown away from the Earth.

We start from the equation stating that the sum of the
kinetic energy and the potential energy of A is equal to
zero. And we are going to use the various things we know.
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1

2
m ȧ2R2 − mMG

aR
= 0 (28)

Now we do a little bit of algebra on autopilot as before.
First, we get rid of m and multiply by 2

ȧ2R2 − 2MG

aR
= 0

Then, as already done, we want to make the volume of the
sphere centered at O and going through A appear in the
equation, because we want to work with a density.

ȧ2 − 2MG

aR3
= 0

ȧ2

a2
− 2MG

a3R3
= 0

ȧ2

a2
− 8π

3

MG
4π
3 a

3R3
= 0 (29)

Notice that ȧ/a is the Hubble constant 6 H, and that

M
4π
3 a

3R3

is the mass density that we have denoted ρ. So the above
equation (29) can be rewritten

6. Despite its name, Hubble constant, H is constant in space, but
not in time.
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(
ȧ

a

)2

=
8π

3
Gρ (30)

That is Friedmann’s equation in the form it is usually writ-
ten. It is equivalent to equation (20) in the case of total
energy equal to zero.

Equation (20) is Newton’s equation, and equation (30) is
the energy conservation equation. But they are equivalent
just as, for a particle, Newton’s equation of motion and
energy conservation are equivalent.

Friedmann’s equation is more useful. It is not completely
general though because we did set the energy to 0. We are
just exactly at the critical escape velocity.

This universe is not going to re-collapse. To get a physical
feel for the reason why is it so, let’s think again at what
happens to a projectile if we shoot it at exactly the escape
velocity away from the Earth ? What happens as time goes
on ? It slows to zero at infinity. It goes slower and slower,
and its velocity asymptotically goes to zero, but it never
turns around. For the same reason, in our model, the ex-
pansion of the universe will grow slower and slower asymp-
totically, but it will never turn around.

Next step is to solve Friedmann’s equation. Again we have
to express its right-hand side differently, because ρ depends
on time. We need to write explicitely the time dependence
of ρ. Recall that it is the simple function
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ρ =
ν

a3

where only a depends on time, and ν is the density with
respect to the grid. By this we mean the quantity of mass
per unit grid-volume, that is for instance a cubic volume of
evolving side length equal to one fictitious coordinate unit.
With the astute grid, the parameter ν is constant in space
and time. Incidentally, we can choose our units so that the
numerical value of ν is any number we like. Hence the basic
equation we have to solve is simply(

ȧ

a

)2

=
k

a3
(31)

where k is the constant 8πGν/3. Since we may choose our
units to make k equal to 1, we may rewrite the equation as(

ȧ

a

)2

=
1

a3
(32)

If we can solve equation (32), we can solve equation (31).
It is straightforward to go from one to the other.

How to solve the differential equation (32) ? Notice first of
all that the right-hand side is always positive. In fact it ne-
ver quite goes to zero, no matter how big a(t) gets. As a(t)
gets really big, the right-hand side gets smaller and smaller
but never zero. That tells us that ȧ/a never becomes zero
either. The equality ȧ = 0 would correspond to the time
when the universe would be turning around.

So the Hubble constant never goes to zero. Therefore it ne-
ver changes sign. But it does slow down. It gets smaller and
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smaller with time. It is as if the universe just grew tired of
expanding but it never got tired enough to stop.

To solve equation (32), in this first lesson we will take the
easy way. We will just look for a particular type of solution.
But we will come back to this kind of equation because it
is absolutely central to all of cosmology. And we can solve
them quite easily.

Let’s look if we could find a solution of the form

a(t) = c tp (33)

where c is some constant, and p is some real power. We
don’t know if there is a solution of this form, but we can
try. Since we know that a(t) slows down, p ought to be less
than one. Let’s use equation (32) to find constraints that c
and p must satisfy. First we can write for ȧ(t)

ȧ = c p tp−1

Therefore

ȧ

a
=
p

t(
ȧ

a

)2

=
p2

t2

Equation (32) tells us that this must be equal to 1/a3, that
is to 1/c3t3p. So we can write

p2

t2
=

1

c3 t3p
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This is possible only if the powers of t are the same. The-
refore we first get a constraint on p

3p = 2

Or p = 2/3.

Then to find c we equate the constants.(
2

3

)2

=
1

c3

This yields

c =

(
3

2

) 2
3

The constant c plays no important role. What is interesting
is that a(t) expands like t to the power two-thirds.

a(t) = c t
2
3 (34)

That is the way a Newtonian universe would expand if it
was right at the critical escape velocity. It would expand
with a such a scale factor a(t), and everything, all galaxies,
would separate from each other over time as t to the two-
thirds power. That is quite a remarkable derivation !

Newton should have done it. It is somehow annoying that
he did not do it. He speculated a lot about the evolution of
a homogeneous universe, but stopped right on the threshold
of doing this calculation. One of the reasons he did not do
it may be that he was a believer in the literal truth of the
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Bible. In mid-XVII-th century, shortly after the birth of
Newton, an Irish bishop by the name of James Ussher had
meticulously calculated from biblical data that the creation
of the universe had taken place on 22 October 4004 BC in
early evening – just after tea time. It was difficult to make it
jibe with the elements of cosmological knowledge that were
already known at that time and with the above model 7.

Let us stress that the model of universe we built and ana-
lysed, for which we established the rate of expansion given
by equation (34), is a Newtonian universe, furthermore with
zero total energy, that is at exactly escape velocity. It is a
pure 3D Euclidean universe, infinite and spatially flat, plus
a straightforward time dimension, without any interesting
Einsteinian geometry.

We did it first of all because it is simple and a good illus-
tration of the way physicists work. Secondly because it
contains, in a simple form, a lot of the physics that we
are going to be dealing with in this course. It gives us a
first model universe with a scale factor that increases like
the two-thirds power of the time.

When the universe is below or above escape velocity there

7. Every great scientist’s biography is usually interesting, but New-
ton’s is fascinating. He developed his most important mathematical
and physical ideas in his twenties, around the time of the Great Plague
of London in 1665. During his lifetime he wrote much more about re-
ligion and alchemy than about science. Despite his superior intellect
he got financially wiped out by the Tulip Bubble. He never married.
After the age of fifty he became Master of the Mint of England, and
for the last 30 years of his life made important contributions to the
management of gold and silver money. Some authors credit him with
inadvertently creating the gold standard, see Peter L. Bernstein’s book
The Power of Gold, John Wiley, 2000.
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is another term on the right-hand side of equation (34). We
will study it in the next lesson. We will examine the three
possibilities : less than escape velocity, at escape velocity,
and above escape velocity. Recall that it is analogous to
the initial velocity given to a stone thrown away from the
Earth.

Figure 8 : Scale parameter as a function of time in the three
configurations of total energy.

Figure 8 is a familiar diagram representing the curve a(t) =
t2/3, that is the rate of expansion of the universe at exactly
the escape velocity, which corresponds to total energy equal
zero, and the curves for a faster expanding universe (posi-
tive energy), or a contracting universe (negative energy).

In all three cases, the tendency is to bend over because
the expansion speed is slowing down. In the third case, of
course, this is before the turning point, after which the col-
lapse speeds up again.

The real universe however, as was discovered at the end of
the XXth century, doesn’t quite look like that. It started
following the middle curve, but then bent upward.
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Figure 9 : Real universe expansion, starting like the zero energy
universe, then accelerating.

One last comment on the expanding universe : the descrip-
tion of this grand movement is on average. To the largest
observable distances the universe appears to be expanding.
And we modeled it as a homogeneous, matter dominated
universe – what is meant by that will be explained in the
forthcoming lessons. Hubble law is not exactly true for all
possible distances. It becomes more and more accurate as
distances get larger.

There are myriad relatively small regions in the universe
where things are contracting, just like in the room the air
presssure, measured on a small scale, is not exactly the
same everywhere. Even when observing things at a higher
level than the molecular scale, there are fluctuations, places
where the air is more dense, places where it is less dense.

Hubble law is certainly not accurate for things which are
bound together by gravity or any other force that may pull
them together. Here and there we find galaxies which have
a peculiar motion. It is the technical term for things which

39



display a movement away from the average expansion.

It is the case of Andromeda and the Milky Way. The Andro-
meda galaxy is not receeding away from ours but moving
toward it. Whatever way it was formed, it happened in a
pocket which was dense enough, slightly out of the ordinary,
so that these two galaxies have enough mass to overcome
the effect of global expansion. It is a fluctuation away from
the norm.

Averaged over a large enough volume, however, everything
is moving away from everything else. We think of galaxies
as embedded in a grid, and the grid is expanding with a
scale parameter a(t) satisfying Hubble law.
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