Lesson 9 : Inflation

Notes from Prof. Susskind video lectures publicly available
on YouTube



Introduction

Before we use it to explain what probably happened during
the very first moments of the universe, let’s review what we
already saw in the last lesson concerning the inflaton field.

In the universe there are several fields : electric fields, ma-
gnetic fields, gravitational fields, etc. We have postulated
the existence of another field, yet undiscovered directly, and
which is a scalar field.

Fields have energy. Electric fields have energy, magnetic
fields have energy, scalar fields have energy. And the energy
depends on the value of the field obviously.

The inflaton is an undiscovered field. We don’t know how

the energy depends on the field. But let’s hypothesize it,
and plot it. Figure 1 shows first of all the coordinate axes.
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Figure 1 : Coordinate axes to plot the energy density of the in-
flaton field.



Vertically will be plotted the energy of the field V(¢), per
unit volume, and horizontally the field ¢ itself. Just think
about the energy density as what would be stored in space
just by virtue of the fact that the field ¢ has a certain value.

If the field is one value, then the energy is one thing. If the
field has a different value, the energy is a different thing,
and so forth. In that respect it is very much like the electric
energy or magnetic energy that is stored in an electroma-
gnetic field. But there is a difference : it is a scalar field.
And that makes a big difference for some things.

So let’s plot V(¢) as a function of ¢. Since nobody has ever

experimentally detected it, we are just going to make up a
graph, figure 2.
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Figure 2 : Energy density V(¢) as a function of ¢.

Now you might think that this is funny. If the field is zero,
shouldn’t the energy be zero? But where a field takes the



value zero is somewhat arbitrary.

Remember that when we use the analogy with a gravita-
tional potential energy V(¢), the field ¢ itself is simply the
height above the Earth, and the height zero is wherever we
like. Alternatively — and here it is even more appropriate —
we could use the analogy of a compressed spring ' where the
potential energy is maximum when its length is minimum,
and that length would naturally be labeled zero.

We call the energy density V(¢) the potential energy den-
sity because it is the energy that is not associated with the
time dependence of the field. It is not kinetic energy that
is associated with a time derivative. And remember that,
since the field ¢ is uniform in space, see figure 12 of chap-
ter 8, there are no relevant space derivatives. It is the field
itself that can be viewed as a spatial coordinate.

The time dependence of the field defines a certain kind of
"velocity". It is not the velocity of something in space. It
is the velocity of the field itself, in other words the time
derivative of the field, which we denote ¢.

If at time ¢ the field has a certain value ¢(t), at time t + dt
it has a slightly different value ¢(¢ + dt), and by definition
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to use the fully-fledged notation of mathematicians.

1. It creates a repulsive force which is a better analogy with the
inflaton than the attractive force of gravitation.



That is the analog of the time derivative of the position
of something. We must think of the value of the field as a
coordinate. It is not the coordinate of a particle, it is the
value of the field itself, take one more look at figure 12 of
chapter 8. And it is changing with time.

For instance, think of the compressed spring. It is a kind
of field taking its values in a one-dimensional spatial world.
And it could be vibrating. If we call ¢ the length of the
spring, there is a ¢.

Then, by virtue of the fact that the spring is moving, there
is kinetic energy. And it is proportional to ¢2. In fact we
usually define it as
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to follow the customary definition of the ordinary kinetic
energy of a mass in motion 2. Equation (2) is the analog of
the kinetic energy of the field.

Now if the field were the position of a particle we would
say that we recognize this : it is like 1/2 mv?. Where is the
m ? The answer is : even if we put a factor, it would not be
a genuine mass. Let’s just call it a parameter, say k. But
then we could redefine our field ¢ by working with V& ¢.
And we would be back with no parameter. So let’s just not
bother with anything in front of ¢/2.

2. Recall that the factor 2 in the denominator of 1/2 mwv? is totally
arbitrary. It simply relates the units of mass to the units of energy,
distance and time.



We have said there is also a potential energy V(¢). So the
total field energy at any time is
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As usual, even if we don’t always specify it, this is the
energy density. In other words it is the energy contained in
a small unit box in space. And we remember that the field

is uniform in space.

So let’s follow a small box the field energy contained in
which is given by equation (3). The mathematics of it is
isomorphic to — meaning, it is the same as — the mathe-
matics of a particle with a kinetic energy and a potential
energy respectively 1/2 #? and V(¢). Or it is very close to
it as we will see. And if ¢ was the coordinate of a particle,
we would know what equation to write down.

Let’s go through the steps. The steps are to say F is the
energy, kinetic plus potential. Corresponding to it there is
a lagrangian L. It is kinetic minus potential energy.
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And then there is Lagrange’s equations. The field ¢, or the
coordinate of the particle, as a function of time, satisfies
the functional equation
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where the unknown is the function ¢(t).



Now, to find what is ¢, we work out Lagrange’s equation
— here there is only one. On the left-hand side, we first
compute the derivative of the lagrangian with respect to (;5
That is just qﬁ Then taking the time derivative yields qﬁ
On the left-hand side we simply have —0V/d¢. And since
V' depends on only one independent variable, namely ¢, we
can write it as a plain derivative. Thus Lagrange’s equation
becomes
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If ¢ was the position of a particle, that would be the usual
F = ma, where "F" is —dV/d¢, "m" is one, and "a" is ¢.

So we see that (;5 is a kind of acceleration : it is the second
derivative of ¢ with respect to time.

We shall also keep the notation F', although it is not a force,
for minus the gradient of V' with respect to ¢.
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It could be constant. For instance a falling object in the gra-
vitational field near the surface of the Earth experiences a
constant force pulling it down, because the potential energy
is decreasing with height with a constant gradient®. But
the F, defined by equation (7), doesn’t always have to be

3. Once more, make sure you see that when we use the analogy
of a particle falling on Earth, the field ¢ we are talking about is the
height of the particle. And the usual gravitational field is what we
denote V(¢), also called the potential gravitational energy.



constant.

So, the equation of evolution of the field ¢ is
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We think of the field as being in a box?, and we assume
that it is not varying very much in space. The reason we
can get away with that in cosmology is because space has
expanded a lot, or we are assuming space has expanded
a lot.

The variations of the field have gotten stretched out, and
eventually they got so stretched out that over a small re-
gion of space, over the box, the field is very smooth and
very flat. That is the assumption.

But equation (8) is the field equation for a scalar field with
a field potential energy V(¢). And it looks like Newton’s
equations.

The quantity E defined by equation (3) is the energy den-
sity. If we actually want the energy in the box, we have to
multiply it by the volume of the box. We consider an ex-
panding box following the expansion of the universe. So its
volume is proportional to a®.

The scale factor would not matter if it didn’t depend on
time. It would just then be a numerical constant. And

4. In other words, we do add spatial independent variables which
the field depends on. Hence we could write ¢(t, z, y, z). But we im-
mediately add that the field doesn’t vary over space. So the variables
z, y and z don’t play any significant role.



the numerical constant, when working with the lagrangian,
would cancel out on both sides. So it would not matter.

But a is time dependent. It is a(t). Therefore the energy in
the expanding box, for which we keep the same notation F,
now is
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And the same applies to the lagrangian. Its new form is

£ = a(t) [2 V() (10)

Then let’s go back and redo Lagrange’s equation, taking
into account a(t)3. Lagrange’s equation is now

Loty b = —alty? 2‘; (1)

It is clear that if a was constant, we could pull it out of the
time derivative on the left, factor it out, and get rid of it.
But now it participates to the quantity we want to diffe-
rentiate with respect to time. That is the new thing. That
is what the expansion of the universe does to the equation
of motion for a scalar field.

Since we want to use the new lagrangian given by equa-
tion (10), a will appear in the equation of motion for ¢.
Lagrange’s equation (11) yields
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The next step, as we know — we are still in the review of
last lesson —, is to divide by a3. We get
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And a over a is what? The Hubble "constant" H, which
is constant over space, but can vary over time. So equation
(13) rewrites

¢+ 3H¢ = F(¢) (14)

For convenience we revert to the notation F' for minus the
gradient on the right-hand side. But keep in mind what it
is. It is the derivative of the potential energy density with
respect to the field itself.

So if we go back to the representation of V(¢) and add a
little ball representing the field ¢, figure 3, it would be as if
there was a force pushing or pulling the field down the hill.
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Figure 3 : Potential energy density, and its gradient pulling the

field down the hill.
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Question : Is there a physical interpretation of the force F
and a way to visualize it 7

Answer : It is just the derivative of the potential. Since
what we are doing is a general form of mechanics — the
mechanics of a field now —, mathematically it has all the
properties of a force. But it is not a physical force in space
pushing or pulling some object. It is an effect, if you like,
which by analogy we call a force, pulling the field toward
lower potential energy. It is a tendency for the field to ac-
celerate toward lower potential energy.

So we have our equation of motion. And the interesting
thing of course is the new term 3H¢. And this new term
has exactly the properties of a viscosity term.

Equation (14) is of course the equation of motion of a field,
not a particle. Yet think of the field as the position of a rock
falling through a viscous fluid, just as an analogy, figure 4

Figure 4 : Rock falling through a viscous fluid.
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The height of the rock is called ¢. It is the height above the
surface of the Earth or whatever. And the rock is falling,
let’s say under the influence of a force F', which in this case
is pushing downward exactly like the force due to gravity.

That means the potential energy is increasing upward. And
therefore the force, which is minus its gradient, points down-
ward.

If that is all there was, we would expect the equation to be
acceleration = force. Indeed we set the mass equal to 1 by
rescaling of ¢ if necessary. So the object in figure 4 would
accelerate. In a few seconds it would be moving a hundred
meters a second. Well, it takes some time to get to 100 m/s
— the reader can calculate it — but not much time, and it
would just whizz away.

But what if it is falling through water, or, even better, so-
mething more viscous than water : honey 7 Moving through
honey, it would gradually sink, but it won’t continue to ac-
celerate. Now we know what H stands for in equation (14).
It stands for honey.

The rock would experience an additional force opposite to
the direction of motion and proportional to the velocity.
Viscous forces depend on the velocity. There is no viscous
force on a thing at rest. It is only when it is moving that it
experiences a viscous force. It experiences the viscous force
opposite to the direction of motion.

To see this in equation (14), just shift 3H¢ to the right-
hand side.
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¢ = -3H¢ + F(¢) (15)

We now see that the acceleration is the result of two forces :
F and —3H qS So if H is positive the drag is opposite to qb
Imagine space filled with gooey substance, and the viscous
coefficient proportional to 3H in this case. Then equation
(15) is the equation of motion of the rock.

Now, in this particular case, if H does depend on time, it
would be as though the viscosity depended on time. But we
are going to be interested in situations where the viscosity
or where H does not depend very much on time. Does the
viscosity of honey depend on time ? Sure, since it depends
on temperature, if it is in the summer it is less viscous, if
it is in the winter it is more viscous®. So, yes, we can think
of viscosity as depending on time. It makes perfect sense.

But for the moment let’s suppose the viscosity did not de-
pend on time. And let’s watch what happens. In the begin-
ning, meaning if we release the stone from rest, there is no
viscous force because qﬁ is zero. So initially the equation is
only § = F (¢). It accelerates.

The stone picks up some velocity according to Newton’s
law. But as the velocity increases, the term 3H qﬁ becomes
more important. Eventually we will get to a point where
the viscous factor 3H¢ matches F(¢), and the right-hand
side of equation (15) becomes 0.

5. Notice too that it depends on the amount of energy absorbed
by the honey, which is transformed into heat, and therefore warms up
the substance. In other words, there is room to build more elaborate
models of viscosity than just the equation é= —’yq.b — &%
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When that happens the stone stops accelerating. That doesn’t
mean the velocity stops. It doesn’t mean the object comes
to rest. It means it just falls at a constant velocity called
the terminal velocity. It is the final velocity that the stone
reaches, where the force pulling downward and the viscous
force opposite to the motion balance.

We can calculate the terminal velocity. Let’s not throw ano-
ther symbol in, but just write

F

h=— 16
b= (16)
That is the terminal velocity reached by the stone when

viscosity balances force.

The bigger the viscosity, the slower the terminal velocity. If
the viscosity is very strong, the terminal velocity would be
very slow. The stone would just move very slowly through
the viscous fluid.

In that case, if the stone is moving really slowly, it is likely
that ¢ would be very small compared to V(¢). Indeed if a
rock or a stone is falling through very viscous stuff, then the
kinetic energy is generally negligible compared with the po-
tential energy. Let’s keep that in mind. It is going to come
back.

Equations (15) and (16), however, are not the equations for

the motion of a stone, but the equations for the evolution
of a scalar field ¢ in a cosmological context.
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Question : By using the lagrangian, are we invoking the
principle of least action ?

Answer : Yes we are. Go back to the discussion of field
theory in volume 3 of the collection The Theoretical Mi-
nimum on special relativity and classical field theory. We
described the use of the lagrangian and Lagrange’s equa-
tions to find the evolution of a field ¢(¢, x), where x can
be multidimensional, figure 5.
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Figure 5 : General scalar field depending on time and space.

But if you don’t want to think about lagrangians, just take
it as a fact that the time-dependence in the energy

2
E—at |

+V(9) (17)

introduces a term akin to viscosity in the equation of motion
of the field :

b+ 3H$ = F(9) (18)
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Now we might wonder what happened to energy conserva-
tion. Consider an object moving through a viscous fluid.
Let’s suppose for a moment that there was no force F'. We
just give it a push through honey. What happens to the ob-
ject 7 It slows down and comes to rest. And what happens
to energy conservation ?

In the case of real genuine honey, we know what happens :
the stone heats the honey a little bit.

But there isn’t any gooey stuff involved in ¢+3Hd = F (o).
There is just the equation of motion of a scalar field. There
are no molecules that get heated up or anything. And so we
should ask : isn’t the term 3Hd.> going to suck energy out
of the system ? The answer is : yes it is.

So the question becomes : why isn’t energy conserved for
a mathematical system with a lagrangian that looks like
this ?

(z')2

L=a(t)y [ 5 V(o) (19)

It is because

Energy conservation is a consequence of time translation
mwvariance of the equations. Furthermore when time trans-
lation invariance is not satisfied, energy in not conserved.

The lagrangian of equation (19) being time dependent, it is

no longer time translation invariant. And there is no energy
conservation for a lagrangian like this. There just isn’t any.
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Hence, not surprisingly, that shows up as some sort of term
in equation (18) which mimics a mechanism which allows
energy to be lost by the system.

This is only one half of the story of the equations for an
expanding universe in the presence of a scalar inflaton field.
The expansion affects the equation of motion of ¢ through
the viscous term. But now we can ask how ¢ affects the
expansion. In fact what does it do to the expansion ?

For that purpose, let’s go back to the cosmological equa-
tion, not the field equation for ¢(t), but the equation for
a(t). That is the Friedmann equation.

We are going to simplify it and just take the flat space case.
You can put back the curvature if you like. It would make
no difference to what we are doing, because it is small by
comparison with the things we are going to keep.

Friedmann equation is

<> - ¥, (20)

The left-hand side is also what we call H2. This equation
can be viewed as an equation for H if we like. It is an equa-
tion for several things. On the right-hand side, we have the
constant factor which as usual we write 87G/3, where G
is Newton’s constant, times the energy density which we
called p in the past©.

6. Go to chapter 1 to review how we derived Friedmann equation,
which is equation (30) of that chapter, and why the factor in front of
p has this form.

17



But we now have an expression for p. It is the quantity in
the square brackets of equation (17), disregarding the factor
a(t)?® in front.

p=-75+V(9) (21)

So we can rewrite equation (20) as

a\> 8rG
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We are now going to make an assumption, which we will
come back to in a little while to motivate it. We assume

that the potential energy V' (¢) is fairly large in some units
we will see, but it has a shallow slope, figure 6.

p)
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Figure 6 : Potential energy density V(¢).

It is tilted down to the right. If was increasing to the right,
we would just redefine ¢ by changing its sign, so we would
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be back to this picture. Thus it is tilted down to the right,
and it does so with a very moderate slope.

Remember, this hypothetical scalar field is called the infla-
ton. Has it been discovered yet ? Only indirectly 7. Does it
exist 7 Probably.

Questions / answers session

Q. : Is the inflaton a scalar field which somehow only has
to do with energy density ?

A. : All scalar fields have to do with energy density. In fact,
every field has to do with energy density, period.

7. Notice that this raises the question of what exists and what
doesn’t 7 When do we see something directly and do we see it only
indirectly 7 The difference is not as sharp as it may seem. In fact it
can be argued that there is no difference at all. Our perception of the
world, and of things existing in it, is only via models in our minds
buit from our senses and reflexion.

Only when lots of traces have accumulated do we say that some-
thing exists. For instance lots of wolf prints in the snow, plus lots of
sheep attacked, plus some vague moving shadows in the distance, etc.
are proof of the wolf, even if we have never seen one in front of us.
Yet we can then surmise that someday we will be able to shoot one
and see it from close. Same with the inflaton : there are many indirect
traces of it.

It is a discussion which deserves more than a footnote, but which
doesn’t have its place in this book. Just notice that man is a creature
fond of symbols. Perhaps what we call reality is only symbols turned
into practical and efficient representations.
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Every field has and contributes to energy density. But the
inflaton has been particularly cooked up to do a certtain
job.

Q. : So it is a contribution to boson fields ?
A. : It is a boson field. Scalar fields are always boson fields.

Every boson could be like this. The inflaton is tailored to
do a certain job — a job that other scalar fields would not
do because they just don’t have the right properties.

For intance, one could think of the Higgs field 8. It is a boson
field. But it doesn’t have the right properties. In particular
its potential is not shallow as in figure 6. And the energy
density associated with exciting the Higgs field is not very
high. We want much more energy density there.

But let’s leave these considerations. So far, this is just a

hypothetical description of the universe expanding with a
field ¢ that has a certain property.

So we suppose that the inflaton field ¢ has a very gradual

8. named after Peter Higgs (born in 1929), British theoretical phy-
sicist. In 1964, Higgs, together with Belgian theoretical physicits Fran-
gois Englert (born in 1932) and Robert Brout (1928 - 2011), as well
as other scientists, hypothesized the existence of an as yet unknown
boson field and corresponding boson particle which would explained
the mechanism of mass. The Higgs boson, sometimes called the BEH
particle, was confirmed experimentally at the CERN in summer 2012.
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tilt to it as shown in figure 6. Think of ¢ as a stone falling.
It is falling to the right. Things always fall in the direction
of decreasing potential energy.

When, in figure 4, we drew ¢ on the vertical axis, we wan-
ted to think of the stone falling through space vertically. As
said, it always goes to lower potential energy. When there
is no other energy expanding it, potential energy always
tends to decrease if it has the freedom to do so.

In the case when ¢ is drawn on the horizontal axis, and

V(¢) on the vertical one, the point moving on the curve to
the right still represents the stone falling vertically, figure 7.
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Figure 7 : Stone or ¢ falling vertically.

So toward the right are decreasing heights or decreasing va-
lues of ¢.

Now, if the tilt is gradual, it means that in equation (18),
reproduced below, the force F'(¢) is small.
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b1 3H = F(9) (23)

In a moment we will come back to the viscosity-like para-
meter H (or 3H) when in fact we get an equation for it.

So far, from Friedmann equation, we know that

g2 (@) _ 816
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Whatever H is, we already know that it is not zero, simply
because the right-hand side is not zero. In particular there
is V(¢). We will come back to it.
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So H is not necessarily small. And, in the context that we
are going to be thinking of, it is rather large : big viscosity,
big viscous coefficient, very gradual tilt. So it is like thick
honey with a weak force pulling us down.

What happens then? We very quickly get to the termi-
nal velocity. According to equation (16), which says that
gﬁtwm = F/3H, the force being small, and the viscosity
large, the terminal velocity is small.

The ball represented in figure 7, which is really the value
of the field, very slowly, gradually creeps down the hill.
Consequently the term qS/ 2 on the right-hand side of equa-
tion (24) can be neglected.

It can be checked with equation (16) that, whatever we

are choosing for the parameters, ¢ /2 is negligible compared
to the potential energy density and can be omitted. Let’s
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suppose we have done that. Then to high approximation,
as long as it is moving very slowly, we can write

2 = % V(o) (25)

Moreover, V(¢) is not varying very quickly. The field ¢ is
varying very slowly. And V(¢), the height of the potential,
is varying with time very slowly too.

In other words, to a pretty good approximation, the field is
standing still, and the value of the potential energy is just
whatever it is on the ramp in figure 7. It is approximately
just a fixed number.

So let’s keep that equation in mind

e = (2)2 = T ve) (26)

How does the universe expand under these circumstances ?
Let’s assume that, because V(¢) is so slowly varying, as a
first shot at it we can just say that H is constant over a
range of time until the rock in figure 7 slides to an appre-
ciably different height. So as long as the rock on the ramp
is maintaining its height, or its potential energy, we can
just say V is a constant. And in that case of course H is a
constant because it is linked to V' by equation (26).

What is the solution of the equations of cosmology with a
constant H 7 Exponential expansion. Why ? Equation (26)
can be rewritten

da
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The solution of that equation is an exponential expansion. If
the time derivative is proportional to the same object with a
constant coefficient, or approximately constant coefficient,
then the object a expands like some constant times e to the
power Ht.

a(t) = kel (28)

And, from the second equality in equation (26), we also

know what H is.
8rG
=72 V() (29)

Of course we might want to fit this to experiment. If, at the
time at which this was taking place, we could monitor how
fast the universe was expanding, we would simply fit V' to
observation. But the things we are interested in here took
place in the very early universe.

Let’s be clear about it : this is a theory of the very early
universe, a theory of the inflationary early starting point
of the universe. At that time V' was believed to be rather
large in any kind of sensible units.

If this is a correct theory, the universe was exponentially
expanding with a large coefficient. How large? The guess
that would be natural in cosmology would be the doubling
of the size of the universe every 10732 seconds.

That is really going! The universe was really accelerating,
really expanding at that time.
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Pay attention to the fact that this is not the theory of the
current accelerating universe. It is the theory of the early
universe.

In a while we will describe what happened later. But this
is the exponential expansion during inflation, which is the

name given to the phenomenon that took place in the very
early moments of the universe.

Question : Large viscosity and low gradient on the one
hand, and rapidly expanding universe on the other hand,
seem to be opposite.

Answer : It is ¢ that is moving slowly ; not a.

The field ¢ moving slowly is related to the potential energy
V(¢) staying more or less constant.

But it is the value of the potential energy which is driving
the expansion of the universe through the constant H.

In other words, it is the derivative of the potential which is
making ¢ move, equation (23). That derivative is small.

But it is the walue of the potential energy itself which is
driving the acceleration of a, equation (26). That potential
energy is large.

These are quite different things.

It is not the scale factor a which is experiencing viscosity ;
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it is the inflaton field ¢. So there is no viscous drag on the
expansion of the universe. It is not what is going on here.
The viscous drag is on the evolution of the field, and it is
keeping it pretty constant.

Why should we be interested in a theory in which the uni-
verse was expanding very rapidly for possibly some signi-
ficant length of time? Time now is measured in units of
10732 seconds ?

The original guess about this, which went back to Alan
Guth? in 1980, did not seem terribly compelling. Yet cos-
mologists and theoretical physicists caught on to it very
quickly. By now it has been confirmed. But it is one of
those stories of guessing in theoretical physics. And at first
it was an outlandish guess.

There were two puzzles, related to each other, that this
theory was addressing. The first puzzle had do with par-
ticles called magnetic monopoles.

Before we go into that, let’s stress that this inflation theory,
i.e. this early very fast exponential expansion, is by now
well confirmed. We now know with some degree of confi-
dence that it really happened that way. And it lasted long
enough to cause the universe to expand by a factor of at
least €%°. We will come to how we know it.

So why should one be interested in the universe stretching

9. Alan Guth (born in 1947), American theoretical physicist and
cosmologist.
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so much ? The first reason, as said, is monopoles. What are
monopoles? They are particles that once again have not
been discovered.

The reader may wonder why should we introduce one crazy
theory with a totally undiscovered inflaton field to worry
about particles which are also undiscovered 7 The reason is
that, although physicists haven’t yet been able to discover
them —i.e. to "see" them in manner that would be satisfac-
tory —, these hypothetical magnetic monopoles play a very
important role in physics :

Magnetic monopole plays the same role with respect to ma-
gnetic field as electric charge plays with respect to electric

field.

A magnetic monopole is simply a source, a point source or
an approximately point source of magnetic field. The ma-
gnetic field should be radiating out from it with a Coulomb
pattern that would be the exact analog of an electric charge,
figure 8.

Figure 8 : Coulomb field created by a single electric charge.
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An electric charge (Q, in the center of the picture, creates
a field F in space. At a distance r from the charge, the
electric field has the value

E(r) = (30)

Q
r2
And the corresponding potential field follows a law in 1/7.
We would expect to meet in nature, or in the laboratory,
magnetic monopoles with the analog behavior for magne-

tism. However so far we have only met magnetic dipoles
whose field has the following shape !°.

N >
Figure 9 : Magnetic field created by a magnetic dipole.

The sought for magnetic monopoles, according to current
theories, have never been discovered in the laboratory be-
cause they are very heavy. How heavy 7 Somewhere up near

10. When we split a small magnetic bar, which has a plus pole at
one end and a minus pole at the other end, into two shorter magnetic
bars, we obtain two magnetic bars each with a plus pole at one end
and a minus pole at the other end.
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the Planck mass.

That is to put it all in a nutshell : magnetic monopoles are
believed to exist ; they exist in most unified theories that we
would think of; and in most theories they are very heavy
by comparison with ordinary particles.

The fact that they are very heavy — perhaps 19 orders of
magnitude heavier than the proton — would easily account
for the fact that they have never been seen in the laboratory.

But now let’s go back to the very early universe. Remem-
ber that the early universe was hot. And when it was hot
enough, there was enough kinetic energy in the form of pho-
tons and other particles that you didn’t need an accelerator
to make elementary particles.

At one point the temperature was high enough that photons
would scatter off each other and produce electron-positron
pairs.

Even earlier it was hot enough that photons would scatter
off each other and produce protons and antiprotons.

If we go way way back to what physicists think of as the
very beginning, the temperature, according to theory, was
hot enough that it could have created magnetic monopoles
— pairs of them.

Just like you create pairs of electrons, that is electrons
and positrons, when the temperature was 26 orders of ma-
gnitude higher than the temperature for electron-positron
pairs, it should have made pairs of monopoles.
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Now the reader can think that this is wild speculation.
Nevertheless every theory that we know about seems to
contain these monopoles.

So the question is : where were they 7

First of all, monopoles cannot easily disappear. They have
a magnetic charge, so they can’t easily disappear. What
could they disappear into? They cannot become electrons
and photons and other things, because those don’t have a
magnetic charge. Magnetic charge would be conserved, just
like electric charge.

So, unless these particles anihilated, and one can estimate
how likely it is that they all anihilated — not likely —, in the
course of the universe as it evolved we would have expec-
ted to find some population of magnetic monopoles floating
around in space.

We might not expect a large density of them. The universe
expanded a lot since the time of decoupling '!. It expanded
by a factor of 1000 since then, figure 10.

Of course, since the time that it was hot enough to create
magnetic monopoles according to the standard theory, it
would have expanded a lot more than that. So they would
be pretty dilute.

11. See figure 6 of chapter 7 to review what decoupling is.
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Figure 10 : Chronology of the universe.
Source : NASA/WMAP Team.

But they don’t seem to be there. Now why don’t they seem
to be there ? Because, they would have an interesting effect
on the magnetic fields of galaxies.

What happens if there is an electric field around and you
have a population of electrically charged particles and an-
tiparticles 7 They discharge the field.

Suppose we have a capacitor with an electric field between
the positive and the negative plates, figure 11.

And, as shown in the figure, there are also positive charges

and negative charge in between the plates. Let’s say elec-
trons and positrons.
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Figure 11 : Capacitor and the electric field between the plates.
On the left is the positive plate, on the right the negative one.
And in between are also charges floating freely around.

What happens? The plus side of the capacitor pulls over
the negative charges; the minus side of the capacitor pulls
over the positive charges; and this discharges the field.

In the same way, if the population of monopoles was as
large as theorists have estimated, and if they lived forever
and sat there in the magnetic fields of galaxies, then, over
the age of the universe, they would have discharged the ma-
gnetic fields of galaxies.

Yet the magnetic fields of galaxies have not been dischar-
ged, they are there, they exist.

So it became pretty clear that there is no significant popula-
tion of monopoles out there, even though the standard cos-
mological theories around 1980 predicted that the universe
should have been hot enough at the beginning to create mo-
nopoles, and then the standard expansion should not have
completely diluted them away.
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That was one set of facts. The other set of facts concerned
the extraordinary homogeneity of the universe, not today’s
homogeneity but the homogeneity at the time of decoupling.
How do we know the universe was so homogeneous then ?
By looking at the cosmic microwave background in different
directions of space.

Since the nineteen sixties, the temperature of the micro-
wave background became better and better measured. And
it was done in every directions. The flux of radiation coming
in, as well as the temperature of it, and its distribution were
measured to very high precision all over the sky.

By the nineteen eighties, it has been found that it was ab-
solutely, or almost absolutely, uniform. To one part in 10,
or even better, it was uniform over the entire sky.

That raised another question : why was everything, at the
time of decoupling, so darn smooth ? No standard theory
of cosmology could explain it.

If you start with a small universe very very hot, it is likely
to have all kinds of fluctuations, and bumps and lumps on it
and so forth. And standard expansion would not have flat-
tened it out and smoothed it to the degree it was known to
be smooth and homogeneous.

The guess that Guth made was that very early, after an ini-
tial period, however, during which the monopoles had been
produced and perhaps the universe had a highly complica-
ted texture, an enormous amount of expansion happened
which diluted the monopoles.
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Enough expansion would dilute anything, so the presence
of monopoles was just diluted to the point where they were
much fewer of them per volume than had been estimated.
This inflation also diluted the textural lumps and bumps
that one might have expected to be there.

Nobody can prove that they were there prior to the infla-
tion. You could just say : well, the universe just started
very smooth. And it stayed very smooth. You could have
also said : the universe started with no monopoles, and that
is why we don’t see any today.

But there was no good reason for the almost perfect ho-
mogeneity and the absence of detectable monopoles at the
time of decoupling — with the exception of one shot at an
explanation. The idea of a very early extremely big expan-
sion can solve both problems. It smoothes everything out,
just like when we inflate a balloon its surface becomes very
smooth, see figure 8 of chapter 8, and it also dilutes the
density of the monopoles.

Estimations were made which vary somewhat. But they all
point to the fact that, if you want to make the universe as
smooth and flat as it is 12, from an unknown starting point,
except that this starting point was not terribly smooth,
you must have approximately 60 e-foldings. An e-folding is
a multiplication by e, which is approximately 2.7.

So, over the course of this extremely big inflation, we have

12. Or as it was at the time of decoupling, whose minute remaining
inhomogeneities lead to today’s universe, with its galaxies and stars
and so forth.
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G/(tQ) — 6H(t2—t1) 60 (31)

It implies that, in a = ef*, the exponent Ht must be at
least 60. That is what is needed to make consistent a small
inhomogeneous initial universe and its observed flatness, i.e.
absence of curvature, and smoothness, i.e. homogeneity, at
the time of decoupling.

That, in itself, tells us that the ramp shown in figure 12
must have been rather shallow. The universe had to stay
on the ramp for a sufficiently long time for it to have grown
by a factor of €.

V()

¢

Figure 12 : Shallow ramp on which the inflaton field evolved du-
ring inflation.

It doesn’t tell us any details. There are all sorts of ways that
we can change one thing and change the other ones. But
the working number is that there had to be 60 e-foldings of
inflation in order to simultaneously account for the lack of
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monopoles and for the lack of structure in the universe at
the time the CMB began.

Q. : Is there any good reason why the universe should have
been rough and bumpy at the outset, before inflation took
place ?

A. : It is better to ask if there is any good reason why it
could not have been rough and bumpy.

Anyway, sixty e-foldings would be enough for something
starting rather chaotic and rough to be stretched out and
smoothed into what we observe in the remnant CMB.

The factor 60 is not hard and fast. It seems to be a mini-
mum. If you make your assumptions worse, you need more,
say 70 e-foldings. In fact we don’t have an upper bound. It
could be €099 or whatever.

On the other hand, by changing the theory in this way or
that way, you can probably bring the minimum number of
e-foldings necessary down to 40 or 50.

But that is not the point. The point is that we can say with
reasonable confidence that a huge inflation took place at the
beginning of the universe, of most probably 60 e-foldings or
more. And that inflation should not be confused with the

Hubble expansion we observe today.

Nothing in the observations bars a much bigger factor, like
80000 for instance, during this early inflation. It would be
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very remarkable, though, because to do that we would have
to make the ramp in figure 12 extremely shallow. We would
have to fine tune the shallowness of it and so forth. But still
there is no known upper bound.

And as far as a lower bound is concerned, as said, an order
of magnitude of 60 e-foldings for a minimum increase in the
scale factor seems plausible. It is necessary to understand
the flatness and smoothness at decoupling.

So that is where things stood around 1980. Guth postulated
this inflation. In order to drive the inflation, he postulated
a potential which looked something like figure 12. The first
round of theory was not quite right. It got into the form
described above after a year or two, following the contribu-
tion of Linde '3 and others.

We don’t want to go back into too much of the history, be-
cause some of the physics was wrong. But ultimately it got
straightened out to where the theory looked pretty much
like in figure 12, with a potential following a shallow ramp
which supported the inflationary tendency for at least 60
e-foldings.

Now one interesting thing is : if the number of e-foldings
was just barely 60, that would mean we were on the edge
of being able to see exactly what it is that the inflation
was invented to get rid of. Inflation was invented to get rid
of something. The factor in equation (31) is how much we

13. Andrei Linde (born in 1948), Russian-American theoretical phy-
sicist.
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needed to flatten the initial rough an bumpy universe to its
current flatness.

What if it were right on that edge 7 If it were right on the
edge, it means we should be on the threshold of being able,
in the next round of experiments, to see some additional
curvature in the universe.

So one of the things that will be hunted for by the Planck
satellite, and other rounds of observational cosmology, will
be to see if the universe really is flat. It might have spatial
curvature, a positive one, or a negative one. And the fact is,
inflation doesn’t tell us whether there was more e-foldings
than 60. It just tells us there must have been at least 60 in
order to account for the present data from observation.

Always, in such circumstances, if you are on the edge, it
means that you have a chance in the next round of disco-
vering more. We will come to why this is so important.

Q. : How is this rapid expansion during inflation related to
the temperature of the universe ?

A. : The first impression, which is close to the truth, is that
this rapid expansion cooled the universe.

If it was just classical physics, and you had heat in a box,
and you exponentially expanded the box, very quickly, it
would cool to negligible temperatures. So the first answer
to this is, at least in a classical universe, that the rapid ex-
pansion will have cooled it down.
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So our first statement, let’s say, is that it was cold, very
cold, during this inflation, because the heat got diluted 4.
Everything got diluted.

The space was expanding rapidly. So it was empty of any
kind of structures — empty in the sense that everything had
been diluted. Ordinarily particles were diluted. Monopoles
were diluted. Everything else was diluted. It was empty as
hell, and cold.

Now this could not go on forever. Why not ? No theoretical
reason. If the potential in figure 12 had some other shape, it
could go on arbitrarily long. But we know it did not go on
arbitrarily long : we are here! The universe is not doubling
every 10732 seconds. So something happened.

V()

7

Figure 13 : Potential energy density of the inflaton field.

14. Remember that the wavelength of a photon in an expanding box
increases, see the section Radiation-dominated universe of chapter 2.
Therefore its energy decreases. And temperature is energy.
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The natural guess is that the potential followed some curve
like the one shown in figure 13. It had a plateau. And it
came to the end of the plateau.

Why it had a plateau, and why the end of the plateau looks
like figure 13, is a mystery today. We don’t know.

What we know is that it is a pretty good representation of
cosmological data.

And what about today? What about the bottom on the
right of the figure ? The bottom of the curve represents to-
day. The potential energy of the field is very small. We will
come back to why in a little while.

If this is the model that works, how does it work ? The first
question is : how did the universe get to where the ball is
shown in figure 13 in the first place 7 Nobody knows. That
is part of the initial conditions. And, of course, initial condi-
tions in this context mean : that is how far we can trace
back with anything like observational data.

So we know from observational data, CMB data and so
forth, that there was a period of inflation. We must have
started up at some location on the left part of the ramp.
How we got there ? We do not know. It is a rather comple-
tely arbitrary thing to start us up there. And it requires a
theory of some cosmological setting.

Did we really start there, or did we come down from some
other place ? We don’t know. But tracing back as far as we
can go, it looks like a good bet that we started somehow
like the ball in figure 13.
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Then we rolled very gradually down the ramp '°. It took
long enough that 60 e-foldings happened.

Now what happens when we get to the end of the plateau?
If it is steep enough, viscosity becomes less important.

Viscosity — which is the way we view the Hubble parameter
H in this setting — becomes less important for two reasons.

a) First of all, since H is proportional to the square
root of the potential energy, equation (29), as we go
down the hill, V(¢) gets smaller and H gets smaller.

a) Secondly, the force F' gets bigger as we go down the
hill, equation (23). So again the viscosity becomes
less important.

The expected result is that, once we got to the edge of the
plateau, we would sort of slide down relatively quickly. In-
flation would stop.

Moreover in the process of sliding down the hill in figure
13, energy was released. The potential energy of the field
disappeared.

Even though in an expanding universe energy is not strictly
conserved 16, there is still some memory. If it is not expan-
ding too fast, you still do get to use, at least approximately,
energy conservation.

15. "Very gradually" not in the sense that it took a long time, but
in the sense that during the inflation the potential didn’t decrease
very much. Its gradient remained almost flat.

16. Because time invariance doesn’t hold. Therefore we cannot ap-
ply Noether’s theorem to energy.
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Consequently, if the potential energy suddenly disappears,
it will be made up for by something. In other words, it is
thought that, as we went over the hill, the potential energy
V(¢) got converted to something else.

One thing that it would get converted to is the velocity of
the field ¢, obviously. But then eventually we get down near
the bottom of the curve.

Let’s assume there is a bottom, as in figure 13. And we get
stuck at the bottom. Where is the energy ?

The current thinking is that the energy somehow got conver-
ted to particles and to heat. And this end of the inflation,
and creation of particles and heat from V' (¢), is usually ta-
ken as the starting point of the Big Bang.

When this vast amount of potential energy, which is belie-
ved to have been there, got released fairly suddenly and got
converted in part into heat, that heat was the starting tem-
perature of the universe when it began as a hot Big Bang.

So the Big Bang has to do with what happened as we slid

down the steep slope on the right of the almost flat ramp,
figure 14.
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Figure 14 : Inflation and beginning of the Big Bang.

The heat that was generated during what we could call
the big slide replaced the right-hand side of equation (26),
reproduced below, by perhaps radiation-domination.

() = ¥% () (32)

And that is when standard cosmology starts, see chapter 2.

Questions / answers session (2)

Q. : In the Higgs field that was mentioned earlier, we have a
constant field and the expectation of that field is the Higgs
boson. So, when we get to the bottom value of V(¢) on the
right of figure 14, are inflatons created ?
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A. 1 Yes, exactly. Well, I mean, when I say exactly, that
is one nice theory. That is one nice way things could have
happened.

The inflaton field is itself a field which has quanta. Those
quanta are called inflaton particles, or simply inflatons.

So as you slid down from the edge of the plateau to the
bottom of V' (¢), you could either think of the inflaton field
¢ as increasing, or you could think of the phenomenon as
the production of lots of inflaton particles.

If these inflaton particles themselves are unstable, they could
decay into electrons, positrons, photons and other things.
And that would be one explanation of how all that energy

got converted to heat and particles.

So, yes, that is one story, which in some form is probably
the right story.

Q. : Is the bottom of the trough, in figure 14, where space
actually began ?

A. : That is not where space began. But somewhere along
the big slide is where the Big Bang, as we normally think
of it, the hot Big Bang, began.

— So, to the left of the slide, space did not exist ?

— Why do you say that space did not exist 7
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— Because the Big Bang did not expand into a space that
existed. It created space, didn’t it ?

— No, it didn’t. A huge amount of space was created by the
inflation. That is what the inflation did '”. It blew up a sort
of fictitious balloon.

I am not sure exactly what creating space means. But let’s
suppose what it means is it makes space bigger.

We don’t understand the starting point. But let’s take as a
starting point some tiny little 3-sphere of space '® in want

of anything else.

What would we mean by saying creating space ? We mean
we made a bigger'”. So that we would be able to move
around in it, and have stars and galaxies and so forth.

17. In figure 14, the horizontal axis is not time but ¢. In fact, as we
said, the inflation happened in about 60 times 10732 seconds. That
is an order of magnitude where we assimilate one e-folding and one
doubling of size.

18. Remember that the surface of the Earth is a big 2-sphere. And
the surface of a marble, or of the ball of a ball-pen, is a tiny 2-sphere.
As we saw in volume 4, as well as in the present volume 5, chapter 3,
this geometry can be extended to three-dimensional spaces. We then
speak of 3-spheres. The reader must make sure that he or she doesn’t
mix up a 3-sphere with the suface plus the interior of an ordinary ball
in a 3D Euclidean space.

19. The reader should not imagine the universe as embedded into
some larger infinite Euclidean space. If we were in two dimensions,
we would think of a 2-sphere, at first small, then larger, but in each
case without any other dimension. A 2-sphere is finite, yet has no
boundary. If the 2-sphere is very big, like the surface of the Earth, it
is locally like a Euclidean plane. The same is true with 3-spheres in
three dimensions and the ordinary 3D Euclidean space..
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2-spheres and 3-spheres have interesting spatial relations
called triangles and things of that nature. When the spheres
are very big, they are locally like Euclidean spaces of the
same number of dimensions. In that case triangles which
are not too big have the sum of their angles equal to 180
degrees. But when the triangles are big this is no longer
true.

So creating space simply involves expanding the initial tiny
universe by a factor of €%, that is approximately 10%6. Af-
ter 26 orders of magnitude of expansion, much space was
created. And it was essentially empty.

But it was full of potential energy. So to say that is was
empty is not quite right, because of this potential energy.
Now this potential energy was actually, at that time, in the
form roughly speaking of dark energy — except that it was
a much much larger value than today’s dark energy.

It was the potential energy of the inflaton field ¢ when we
are still on the ramp in figure 14, but near the right edge.

That potential energy V(¢) got eliminated when we rolled
down the hill. Something had to replace it. What replaced
it, according to theory, was particles, heat, light and all the
stuff that the universe began with — "began with" in the
sense of standard cosmology.

It rolled down to the bottom. What about the bottom ?
Was there any potential energy left over at the bottom ?
Yes there was some. And what do we call it today 7 Dark
energy.
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The universe is still believed today to be expanding expo-
nentially but with a tiny Hubble constant. Now it doubles
(or is multiplied by e) not every 10732 seconds, but once
every 10 billion years. That requires a very very small po-
tential energy in the trough of figure 14. And that is what
we today call the cosmological constant.

Q. : So where are the magnetic monopoles ?

A. : The magetic monopoles where created before the par-
ticles that make up our universe. The latter where formed
after the inflation was over and V (¢) was transformed into
matter and other kinds of energy. The former were created
before the inflation.

The monopoles were diluted out of existence during the in-
flation. They are still around, according to current theory,
but their density is so weak that it is as if they didn’t exist.

Q. : Are we on the edge of seeing monopoles ?

A. : No, I don’t think we are on the edge?® of seeing some
monopoles. But we are on the edge of seing some curvature.

I don’t think there is any chance of seeing monopoles. We
know that the galactic magnetic fields were not unwound.
But the precision with which we can say anything about

20. "On the edge", here, is not in the sense that it is finally going
to happen, but in the sense that it is almost possible.
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monopoles from the fact that the magnetic fields were not
unwound is not very good.

What we can do, however, is measure the curvature of
space. It has been measured to some precision. So far it
is zero with a precision of the order of 1% in some units.
In the next round of experiment the tolerance in the pre-
cision will go down possibly two orders of magnitude. And
we may discover that space is curved.

The tightest constraint imposing a large number of e-foldings
during inflation is the fact that space looks flat 2'. In other
words there was enough inflation that it flattened things
out to a degree such that at present we cannot measure
any curvature of the space.

Q. : So the potential energy at the bottom of the trough
in figure 14 is a potential energy still present today in the
universe 7

A. : Yes. It is the vacuum state energy of today, also called
the dark energy of today.

21. It is always a bit weird to think that the universe might not
be a flat 3D Euclidean space, but might have, in three dimensions, a
positive, or a negative, curvature. Yet, observe two things :

1) If it is not flat, it is certainly locally flat — locally meaning
within a few billion light years of where we stand.

2) In Antiquity the Earth was thought to be a flat plane, until
the Greeks understood that it was more like a sphere, or part
of a sphere. And that it was a complete sphere was confirmed
by Magellan’s circumnavigation (1519 - 1522).
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So in some sense figure 14 is a nice unified picture of infla-
tion and dark energy, inflation having taken place while the
universe was on the slightly tilted ramp, and dark energy
being what remains today, after the big slide, at the bottom
of the trough, of the initial V(¢) which was mostly conver-
ted into light, matter and heat.

On the other hand it is a complete mystery why the value
of V(¢) today, down at the bottom of the trough, is 120
orders of magnitude smaller than it was up on the ramp.

That is one of the numerous mysteries of cosmology. In fi-
gure 14, we represented the lowest value of V still somewhat
above 0, but it should be remembered that it is 120 orders
of magnitude smaller than on the ramp. So it should all but
touch the horizontal axis.

That, of course, is the mystery of the small cosmological
constant.

Q. : You say that during the expansion there were no radia-
tion or anything, just space that expanded, but you also say
that the expansion smoothed things out. What was there
to smooth out ?

A. : The curvature of space. The 3D geometric cuvature of
space was flattened out, just like, in 2D, the curvature of

the Earth is less than that of a basket ball.

— But how does this stand with the monopoles that got
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created later on ?

— No, no. no. No monopoles were created later on. If you
think that monopoles could have been created during or
after inflation, you are in trouble.

The question is : when the point [ ¢, V(¢) ] fell off in the
big slide, after the ramp in figure 14, how hot did it heat
the universe ?

Did it heat it to the Planck temperature? In that case, we
are back exactly to where we started : plenty of energy to
create monopoles.

Or did it heat it to something more moderate and modest ?
That depends on the details.

So yes, you are right, there is a question here.

The big slide in figure 14 is called reheating, incidentally.
It could have just been called heating. But, whatever its
name, it created a certain temperature. It is the tempera-
ture at the beginning of the Big Bang.

It is essential that that temperature is low enough to be
below the threshold for creating monopoles. Otherwise we

would be back where we started. If monopoles were created
on the big slide leg of the journey, we are back in the soup.

Q. : Are monopoles condidered particles ?
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A. : Yes, they are — very heavy ones.

— And they existed before expansion happened ?

A. : They may have existed before expansion happened. Or
they may have failed to have been produced, for the simple

reason that it was not hot enough.

Now, you have to juggle numbers to get this to work out.
But the numbers aren’t crazy.
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Figure 15 : Position of the universe today.

Q. : Where are we now on the curve?
A. : We are at the bottom of the trough, figure 15.
— Is there some overshooting expected that would send us

upward on the other side ?
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— No no. Well, maybe a little bit. The reason that it doesn’t
overshoot is because of the friction.

Remember that the equations of cosmology have a friction
term in them. The expansion of the universe today is big
enough to provide a friction that would make it very unli-
kely for the point [ ¢, V(¢) | to spontaneously go up the hill.

Another way of saying it is that it was the friction term
that brought it to rest. It may have overshot. It may have
even rolled back and forth a couple of times, like a ball in
a bowl with friction.

But the friction term due to the expansion of the universe
would have slowed it down. It would have come to rest.
And then like any kind of object at rest in an equilibrium

position, a rock sitting at the bottom of the sea, it is not
going to suddenly spontaneously move up.

Q. : What caused that curve to suddenly drop ?
A. : That is the question. We just don’t know !

The curve in figure 15 is a parameterization that fits obser-
vation.

We don’t know why it was so flat along the ramp. And we
don’t know why it didn’t continue to be flat.

There is no theory of it.
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Q. : Even if there is no clear explanation for it, do we be-
lieve that there was a cause which stopped inflation 7 And
what could it be?

A. : Let’s put it this way. I think the only known answer
to any of these questions, and when I say "known answer"
I don’t mean to say that it is known to be right, but the
only answer around is the anthropic principle.

It is the principle according to which the universe may be
extremely big, and may have many many different environ-
ments of all different kinds. And by happenstance we are in
one environment which enables life and creatures like us.

In other words, you can ask : here we are, what kind of
environment was necessary for us to exist ? The thing is, a
lot of finely tuned parameters are necessary for us to exist.

And of course, to start with, we certainly couldn’t exist if
the universe was as big as a peanut ?2. So it had to have
evolved and expanded.

I don’t want to get into a discussion of fine-tuning and the
anthropic principle in this lesson?3. Notice however that
the general structure of the curve in figure 15 is dictated
not only by observation, but most of it, or large parts of it,

22. We stress once again that this is an image embedded in 3D
Euclidean space. What is meant is a small 3-sphere on its own. A
peanut, whether we consider only its surface or its surface and its
interior, is not a 3-sphere. It is just something small. And it is in that
sense that we use it as an image.

23. For a discussion of fine-tuning and the anthropic principle, see
the final section of chapter 10 of volume 6 in the collection The Theo-
retical Minimum on statistical mechanics.
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are necessary for the universe to have evolved to something
that looks like what we live in.

We will come back to it. As of 2013, other than the anthro-
pic principle, we have no explanation of why the features
of the curve are like this.

Q. : Doesn’t everything that happens in the universe have a
cause 7 That would be the first example of something with
no cause ?

A.: We don’t know. Some things are unknown.

Concerning things with no cause, in quantum mechanics
when we are interested in one observable, if the state of the
system, before the observation, is in a linear superposition
of eigenvectors of the observable, after the observation we
will measure one eigenvalue and the system will be in the
one corresponding eigenvector.

As the reader remembers from volume 2, those eigenvalue
and corresponding eigenvector are random. The same exact
setting and experiment can produce another eigenvalue and
its corresponding eigenvector. It is the so-called wave func-
tion collapse. We studied it and the probabilities of the
various eigenvalues, and won’t go over it here. But in that
sense the measurement obtained has no cause.

Q. : The horizontal axis in figure 15 is the value of the infla-
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ton field ¢(t). Is ¢ increasing with time, or could it become
smaller 7

A.: Time isn’t on the graph. But we can mark it off, figure
16. The value of the field is indeed increasing with time.
This is the model. Since ¢, so far, is a made-up field, if the
model lead to a decreasing field, we would just look at its
opposite, and it would be increasing with time.

Vi) 4

—‘g\

Figure 16 : Marks of time.

As time passed, the field ¢(t) progressed on the ramp to
the right. Every 10732 seconds the universe doubled in size
(or more precisely was multiplied by e). At the edge of the
ramp, before the big slide, the time is at least 60 x 10732
seconds, corresponding to at least 60 e-foldings. It could be
more.

Then, relatively quickly it went down the hill. How long did
it take to go from the edge of the ramp to the bottom of
the trough — which is where we are today ? Probably more
than 10732 seconds, even a lot more, but, on the scale of
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ordinary time, still pretty quickly.

Q. : Do we have an idea how the temperature varied while
the point [ ¢, V(¢) ] ran its course on the curve ?

A. : Yes. The temperature was very cold during the infla-
tion period, when the point was on the ramp.

Then, after it toppled over the edge, during the big slide,
temperature went up, because the potential energy V(o)
of the inflaton field got transformed into light, matter and
heat. We don’t know with any detail to what temperature
the universe was heated up by the time it got down to the
bottom.

But what we do know is it had to have been hot enough
to create all the particles that we know and love, quarks

and everything else. So it had to be in the range of huge
particle-physics-temperatures.

Q. : How many degrees ?

A. : T always have to work this out :

Room temperature is a 40th of an electron-volt.

We are talking about temperatures which were high enough

to create proton-antiproton pairs, or very likely much hot-
ter than that.
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1/40 eV, for room temperature, that is 300 degrees Kelvin.
So 1 eV is about 12 000 degrees Kelvin.

A billion electron-volts in necessary to create proton-antipro-
ton pairs. So that is a billion times 12 000 K. We are in the
range of 102 degrees, or hotter. 10!3 degrees is probably
on the very low end.

Remember, you must have heated the universe up enough to
create the baryon excess, to create proton-antiproton pairs
and that sort of things. But it was probably much hotter
than that.

Q. : Are the boson axion fields created during this pro-
24?

cess
A. : Yes. During the slide down axions are created. Then
they decay. And in the process of decaying they produce
the usual particles : photons, electrons, quarks, anything
that creates ordinary energy density.

And they also decay into dark matter for that matter —
probably more dark matter than anything else.

Q. : You said that the field ¢ always moves in the direction
of decreasing potential energy. And now we are at statio-
nary point of potential energy at the bottom of the trough.

24. See chapter 6 for a brief presentation of axions.
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Does this imply that the potential energy that is in the uni-
verse today is here to stay and will never change ?

A. : That is right. It looks like, at the present time, we are
stuck at the minimum. And unless something else happens
— that is not built into the equations at the moment —, we
will stay there forever.

Now it is interesting to ask : what happens if we stay
there forever 7 The universe exponentially expands. True it
doesn’t exponentially expand very rapidly. But still, every
10 billion years or so it doubles.

In another few dozen billion years it will have expanded so
much that basically the galaxies will have all receded from
each other beyond their respective horizons. Then our ga-
laxy will be alone.

The case of the Andromeda galaxy 2° is special. By then it
will probably have merged with ours.

Everything else is moving apart. And we will truly be alone
out there. There will be nothing but the Milky Way.

The cosmic microwave background will also have cooled to
a temperature which is way below detectable. Everything
else in between galaxies will have stretched out and diluted.

This is not due to the sudden, huge and very brief infla-
tion corresponding to the ramp in figure 15, but to the

25. The Andromeda galaxy is 2.5 million light-years from the Earth.
It is our nearest neighboring galaxy.
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current Lemaitre 26 -Hubble expansion which is very slow —
the point [ ¢, V(¢) ] not moving at all anymore.

In a few dozen billion years, I think it is a good deal less
than that, but let’s say in a couple dozen billion years, our
galaxy will be absolutely isolated. And physicists who live
in it at that time will have no way of knowing that they are
part of a larger population of galaxies.

They will not be able to measure anything about astronomy
outside their own galaxy. They will not even be able to tell
that their universe is undergoing an accelerated expansion.

Remember : how did we discover the current dark energy ?
We discovered it by astronomy, by looking at the cosmic
microwave background radiation. But, as said, the CMB
will have cooled to a temperature which makes it undetec-
table.

Everything in astronomy will have departed and gone through
the horizon. And so we won’t be able — not we, but they
—, they will not be able to tell that they are in an inflating
accelerating universe.

If they come on the scene without history books and so
forth, at least for some period of time, let’s imagine, they
will look around at a universe which is 50 billion light years
big. They won’t see anything. They won’t be able to tell it

26. Georges Lemaitre (1894 - 1966), Belgian jesuit, astronomer and
cosmologist. Lemaitre published a paper describing the expansion of
the universe, and its rate, in 1927, two years before Edwin Hubble.
The Russian physicist and mathematician Alexander Friedmann (1888
- 1925) had also began to figure out even earlier in the 20’s that the
universe might be expanding, see chapter 1.
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is 50 billion light years in size.

They will send out probes. And the probes will go out a few
thousand light years and come back. They will bring out no-
thing because there will be nothing out there for them to
see.

So they will discover themselves to be a unique phenome-
non sitting at the center — they will of course call themselves
the center — of the universe. And they will be puzzled.

Then some smart young person will come along and say :
you know, maybe there is a lot more things out there. But
the universe just expanded and those other things maybe
just went away.

Q. : Is it clear that all this started from a point source ?
Couldn’t there have been other point sources that exten-
ded back to us?

A. : What does a point source mean? Point sources in
what ?

— A point without any space, when there was only time,
and no space, before the creation of space itself.

— Ok, but if there is no space, except only this tiny little
nugget, what is a point source in?

You are imagining that this thing — this tiny 3-sphere, for
instance — is in some other space. But that is the wrong idea.
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Q. : Couldn’t there be more than one ¢ space?

A. : There could have been more than one. But you will
have to ask somebody else.

Q. : In a few dozen billion years from now, when we will
not see the next galaxy, won’t it be analogous to today’s
situation where we can’t see beyond our horizon ?

A. : Yes it will be analogous, except that everything, apart
from our own galaxy, will be out beyond that point.

Q. : Do we have any idea what these inflaton particles might
have looked like ?

A. : We don’t have much idea. The mass of the inflaton
particle has to do with the curvature of the curve down at

the bottom in figure 15. And we know nothing about it.

The only thing we know is that it is not so light that we
would have produced it in an accelerator. That is about all.

Q. : Is this ¢ also function of spatial coordinates ?
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A. : Oh, absolutely. Again, however, ¢ might have started
with lots of ripples. But in the process of sudden huge in-
flation those ripples got stretched out.

So after a couple of e-foldings, the ripples would have been
pretty much eliminated locally, and you can forget them,
although we will come back to that in the next lesson.

Q. : Will you talk about those ripples related to quantum
fluctuations ?

A. : Not in the present lesson. We will come back to quan-
tum fluctuations.

For the moment, let’s just imagine a classical wave form
which gets stretched out. That is the primary thing that
happened.

Superimposed on top of that will be quantum fluctuations,

and they will play an enormously big role when we come
back to it.

Q. : Can we today see galaxies slipping over the horizon ?

A. : No, no, no. The horizon is so redshifted, that all we see
out there is cosmic microwave background.

When we look back that far, first of all we are seeing the
universe at an early time before galaxies even formed.
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So we look way out there, and the farthest that we can
see is to the surface of decoupling. It is called the surface
of last scattering, but that means the place where the uni-
verse was opaque. That is pretty much out near the horizon.

We can’t see farther than decoupling?’. But even if we
could, we would be looking back so early that there would
have been no galaxies.

So the answer is no, we can’t see galaxies going through the
horizon.

Q. : So it is only at a later time that these objects are going
to slip over the horizon ?

A. : But we will never see them slip over 8. When we look
out we will see pretty much the same thing.

Q. : Question relating to information theory : considering
that no information is ever lost, what information could be
contained in the universe in a couple dozen billion years
that could contribute to the knowledge of its origin ?

27. Before decoupling, photons were constantly scattered, absorbed
by atoms and reemitted. So they don’t carry information on what
went on before.

28. Go to volume 4 of the collection The Theoretical Minimum, on
general relativity, to review what happens to objects going through
the horizon of an observer, as seen by that observer.
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A. : If observers still exist in a couple dozen billion years
— if stars exist and so forth —, what they will have is their
own little galaxy in an othewise completely empty space.

It is very hard to see how they could do any observations
which would directly tell them that they were in a space
which was doubling once every 10 billion years or once every
20 billion years.

I can’t ofthand think of anything that they could do, short
of sending out probes which would take of the order of
billions of years to go out there and come back, and make
measurements on the whole global structure of the universe.
Short of that, I can’t see how they could tell what the ex-
pansion properties of the universe were or anything else.

They could do that. They could take tens of billions of
years, and explore. But they can’t go too far, because if
they go too far, they go outside their horizon and they can-
not get back.

They can only go out to distances of order 20 or 30 billion
light years, something like that, send signals back and forth
which would take billions and billions of years, triangulate,
discover the fact that things are receding away from each
other. But they would have to come back before they go
too far.

So in principle they can do geometric measurements, disco-
ver this curvature of spacetime, discover the fact that there
is a dark energy. But it would take billions of years, at least
with the level of precision of their instruments. I think even
with better levels of precision, they will have trouble.
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In summary, if their astronomers are anything like our as-
tronomers 2%, it will take them billions of years the recons-
truct the fact that they are in an inflating universe.

Q. : I guess it is a similar question. Do you think that dark
energy can carry information ?

A. : No.

Q. : Concerning gravitational attraction of galaxies, aren’t
there larger structures such that galaxies will be closer to
each other sometimes in the future ?

A. : Yeah, I actually once asked some observational cosmo-
logists : is it really true that all that we will see will be us
and the Andromeda? And I think it is true. I think every-
thing else is participating in the outward flow enough that
they will recede.

Q. : Then, if the universe expansion is accelarating, what
will be happening to us?

A. : We are down there and just sitting there. Nothing is

29. Notice that, by then, it will have been a long time since they
moved from the Solar system to some more hospitable location in the
Milky Way.
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happening in this universe.

Q. : Can you express this field ¢ as a function of time ?
A.: Why write an equation ? A highly speculative equation,
as far as the actual coefficients are concerned, involving time
won’t add anything.

So I'm saying that [ ¢, V(¢) | started at point A, slowly 3

drifted to B, suddenly picked up and plunged down to C,
figure 17.
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Figure 17 : Main events in the evolution of [ ¢, V(&) ].

Between A and B, it is pretty linear in ¢ as well as in t.
Then, at B, it becomes non linear. Between B and C, it
is non linear in time. Finally today at C, it is constant
in time. Indeed, after some possible small past oscillations

30. Slowly in the sense of a small gradient of V(¢) with respect
to ¢, not with respect to time. Indeed, this theoretical inflation was
sudden, huge and of short duration.
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quickly damped by friction, the point [ ¢, V(¢) | doesn’t
move anymore.

Q. : You mentioned that in a distant future astronomers
could actually send probes out. But dark energy 3! is such
that at some point in space from us the universe is expan-
ding faster than the speed of light.

A. : Yes, the probes must not go past the horizon if the
astronomers want to get them back or even to be able to
receive their signals.

But they can certainly go a few billion light years out and
then come back. And that should be enough for them to
be able to measure carefully properties of space (geome-
try and expansion). The astronomers would not just send
one probe, but a few probes emitting light signals back
and forth between each other and base camp. These signals
themselves would take billions of years to travel.

They could probably do some triangulation. I haven’t thought
about it a lot. It is not an urgent thing on my agenda :-)

Q. : Does the horizon recede ?

A. : No. The horizon stays where it is, roughly 50 or 60
billion light years away from us. I don’t remember exactly

31. Remember that dark energy, that is the density of energy of
vacuum in space, is the same thing as the cosmological constant A.
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the value.

Q. : There is less space out there, isn’t it 7

A. : Less space? Oh no! It is the same space everywhere.

The farther you go the more space there is32.

But there is less stuff in it. There is a lot of space out there,
but not much stuff in it.

Q. : How do you define that boundary horizon? Is that
where the recession velocity of galaxies approaches the speed
of light ?

A. : Yes.
If you are sitting at the point C in the trough, the poten-

tial energy V' (¢) is constant over time. Then, according to
equation (29), reproduced below, the Hubble constant H is

constant over time.
8rG
H =T V() (33

Since H = a/a, it implies that the universe is expanding

32. If we live in a 3-sphere, it is meaningful to say, though, that at
the other extremity of the universe from us space is shrinking. But
that is way beyond our horizon. So for practical purposes, space has
more and more room, so to speak, as we go farther away. Think, in
2D, of the surface of the Earth to imagine this comfortably.
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like this
a(t) = et (34)
Therefore the receding velocity of any point from us is equal

to its distance from us times the Hubble constant 33. We can
write this as follows

V =DH (35)

Now we can solve for D the equation : at what distance
away from us are things receding with the speed of light 7

C=DH (36)
We find that the speed of light C' (no relation with the point
C' in figure 17) divided by Hubble is that distance, i.e. the
distance of the horizon.
The calculation gives something of order 15 billion light
years — from the known numbers. That is where things are

receding away from us with the speed of light.

Notice that past that horizon, they recede from us at speeds
higher than the speed of light.

Q. : By the time any object outside our own galaxy has

33. Remember that the term "Hubble constant" refers to the fact
that it is always constant in space. When it happens to also be
constant in time, as in the above example, we usually specify it —
whence funny sentences like "when the Hubble constant is constant".
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receded beyond our horizon, won’t our galaxy have disap-
peared as such too? Won'’t all the stars be dead ? And same
for the other galaxies, even if they are far away ?

A. : You will have to ask a galactic specialist. But I don’t
think so. Perhaps the galaxy will have been diluted some-
what, but not a lot.

How many stars alive will there be 7 What density of stars ?
I don’t know. But I think that will survive for a trillion
years.

I think there will still be galaxies. There will still be stars.
And with any luck there will still be planets, some of them
hosting intelligent creatures.

Q. : You spoke about the inflaton as a particle. Is it correct
to think of space as having been then filled with many in-
flatons, like it is filled today with many ordinary particles
and energy ?

A. : Yes. That is exactly right. To some extent you can ima-
gine that all the energy was stored in a kind of condensation
of the inflatons. And it was released as we came down from
point B to point C, in figure 17, and the inflatons decayed.

Again, much of what I’'m telling you would have to be true
in order to explain why the universe is the way it is today,
and was the way it was during the observable period. We
do not understand with any great insight why is this the
picture.
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In other words, the inflation theory is a hypothesis trying to
explain what we observe. Significant evidence now is gathe-
ring which confirms it. And no observation so far appears to
starkly contradict it. It raises of course as many questions
as it solves. It is live science, with debates, critics, stakes,
and emotions.

Let’s close this long and interesting questions / answers
session.

Structures in the universe

The next thing on our agenda is to understand why, after
all this inflation, isn’t the universe completely smooth.

The amount of inflation, that took place in order to make
it as flat as it is, would have made it so smooth that there
would be no explanation for the structures that are out
there — the inhomogeneities that are out there today.

So the next topic we want to come to is the fact that the
universe is not homogeneous. And it has a structure. It
shows all kinds of structures under various scales.

Let’s begin with a very naive, but still more or less right,
explanation of why the structure of the universe appears

the way that it does.

Now we are not talking about what it traces back to in the
early universe. For the moment we are talking about today.
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And when we say structures, we don’t mean galaxies now.
Galaxies are small potatoes on a small scale. We mean on a
much bigger scale, not even clusters of galaxies, but whole
superclusters of superclusters of galaxies. And they form a
structure that fills the universe.

It is not completely homogeneous on those scales. That
structure is quite fascinating, and, we think, largely un-
derstood. But it is mostly understood by simulations.

The simulations start by assuming the universe was not
precisely smooth. So they start with a certain pattern of
non-smoothness called the fluctuation spectrum — which we
are going to study a bit. Then they allow gravity and just
the motion of objects and so forth to evolve and they show
that it creates a structure.

Now, on the biggest scales of super duper clusters of ga-
laxies, gravity is not all that important. On the scale of a
galaxy, and certainly on the scale of a star or of a planet,
gravity is what pulls things together. But on bigger scales
the structure that is seen is largely not, or to some extent
not coming from gravity. It would be there even if there
was no gravity.

But what the structure requires to be there is to start with
some inhomogeneity, some fluctuation in space. So we are
going to talk a little bit about the theory of how that struc-
ture got formed. And that theory is extremely simple.

Let’s look at three pictures. The first one is an actual pho-

tograph of the deep sky, showing things very far away,
figure 18.
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Figure 18 : Real photograph of the deep sky.
Source : NASA, Hubble telescope.

This picture is very deep astronomy, billions of light years
out, high redshifts, etc.

Beyond some stars of the Milky Way, and some galaxies
not too far from us, appearing as points, we can see a kind
of filamentary structure. The filaments are not single ga-
laxies, there are thousands and thousands, maybe millions
of galaxies. The filamentary structures intersect and form
a complicated web, at least photographically on the sky.

This filamentary structure is sketched in figure 19. It is
an exaggeration to focus on what we are interested in. At
the intersection of the apparent filaments, the nodes are
particularly bright. And there are big voids in between the
filaments.
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Figure 19 : Filamentary structure appearing in the deep sky.

This structure is on a scale much much bigger than a ga-
laxy, the picture width is half a billion light years or so.

The second picture is the product of a computer simulation
made by people, figure 20.

Figure 20 : Computer simulation creating a similar filamentary

structure. Source : Volker Springel, Virgo Consortium.
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What do they do? They start with a bunch of particles.
Well these are galaxies, but let’s speak of them as par-
ticles. Initially the particles have some kind of spectrum of
fluctuations. Fluctuations means some randomness in their
distribution, in particular in their velocity distribution. In
one region a space they might be moving a little more this
way, in another region moving a little more that way, traced
back to some primordial variation which we want to unders-
tand. That is what we start with, and we let it evolve for a
while.

So a good starting point for this would be a uniform spatial
distribution of stuff, but with small variations in velocity.
It is the velocity variations which are the most important
things. And what do we see after a time in the simulations ?
We see a picture which looks just like the real filamentary
structure in the sky, except sharper, clearer. Why 7 Because
it is simulation. We are not looking through a telescope at
billions of light years away or more. So we have great detail.

Q. : What interaction are you allowing in those ?

A.: At the moment, none. I am going to expound the theory
that we would get if there were no forces.

And the third and last picture is a beautiful blue colour
photograph of the bottom of a swimming pool on a sunny
day. Light forms patterns at the bottom of the swimming
pool, figure 21.
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Figure 21 : Light patterns at the bottom of a swimming pool.

If we set picture 2 and picture 3 in the same colour, you
would have a hard time telling the bottom of the swimming
pool from the simulation of galactic structure. They look
very similar. Of course one is in three dimensions, and that
makes a big difference. But of course what we see is only
two-dimensional.

To summarize, the swimming pool, the real universe, and
simulations have a remarkable similarity.

What is the explanation of this? It stems from something
called caustics. Caustics were first encountered as an op-
tical phenomenon, for instance the bottom of the swim-
ming pool phenomenon 3* . And we can make a simple one-
dimensional version of it.

34. With proper lighting, you can even see some — different from
those at the bottom of the swimming pool — with your mug of coffee
or tea.
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If the world were one-dimensional, caustics would just be
spots. If the bottom of the swimming pool was replaced
by a one-dimensional bottom, instead of seeing lines like in
figure 21, we would just see spots of high intensity, figure 22.

Figure 22 : One-dimensional caustics phenomenon
(for convenience light corresponds to black.)

The phenomenon of caustics is slightly different depending
on the number of dimensions :

a) In one dimension, the caustics are the spots of high
intensity.

b) In two dimensions, the bottom of the swimming pool
shows a web not of spots but of lines of high inten-
sity.

¢) And in three dimensions we shall find out what they
are replaced by.

Let’s explain the phenomenon of caustics. For simplicity
we consider the one-dimensional case. Let’s imagine a one-
dimensional swimming pool, with some length, some depth
but almost no width. So it is a thin vertical rectangular
tank of water. One horizontal side is the bottom of the
swimming pool, the other horizontal side is the top. The
other two sides are lateral walls which don’t play any role
in the explanation. It is represented in figure 23.
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Furthermore, the bottom of the swimming pool is repre-
sented at the top, and the vertical axis, which is the depth
(upside down), is also the time.

¢

Figure 23 : One-dimensional swimming pool, upside down. The
surface of the swimming pool (at the bottom) has small waves
which refract light rays in different directions.

There is a little bit of waviness on the surface of the swim-
ming pool (shown at the bottom in the figure). It is sort
of a rough surface. So, when light rays come in, they are
refracted in directions which vary from place to place.

The different directions of the light rays in the swimming
pool, on their way to hit the bottom, are due to the random
fluctuations in the slope of the water surface, which act like
plenty of lenses. As a result, at the bottom of the swimming
pool, we see spots of high intensity separated by intervals
of lower intensity.

Let’s dig further into the explanation and extend it to the

sky. Let’s call X the horizontal axis corresponding to the
surface of the swimming pool.
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Notice we can either think of figure 23 as representing the
light waves from the top of the pool to the bottom of the
pool (upside down), or we could think of it in a totally
different way. We could think of particles starting with dif-
ferent velocity at ¢ = 0.

The horizontal axis, instead of being the top of the pool,
would be the time t = 0. And instead of the slightly dif-
ferent angles that the light refracts through, the particles
would have slightly different velocities moving along the ho-
rizontal axis. Figure 23 then becomes the usual two-dimen-
sional representation of motions on a one-dimensional hori-
zontal axis, the vertical axis, instead of being the depth of
the pool, now being simply time.

So let’s start down at t = 0, taking the point of view of par-
ticles moving. And let’s assume for simplicity that initially
the particles are uniformly distributed along the X-axis,
with no tendency to bunch up like the points in figure 22.
To sum up : uniformly distributed but slightly different ve-
locities as we move from place to place.

Let’s define

dn
X (37)
as the number of particles per unit X as we move along the
X-axis. It is what we would call the density of particles on
the X-axis. It depends on X and on t. At ¢ = 0 let’s take
this density to be equal to 1 for all X. We can take it any-
thing we want, but let’s just say it is uniform, featureless.
The magnitude of it is not important. What is important
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is that it is featureless. So we initially have dn/dX = 1.

Now what happens to each particle? Consider a particle
which started at position X, and let’s see where it is at
time ¢, figure 24.

Figure 24 : Motions of particles.

We call Y (t) its position as a function of time. It the par-
ticles were not moving, we would just say for each particle

Y(it)=X (38)
The position of a particle after a certain time would be the
same as its position when it started. And X is just a label
that labels where the particle was when it started. That is

what we would say if the particles weren’t moving.

But if the particles are each moving with a velocity V', and
V depends on X, then equation (38) becomes

Y(t) =X +V(X)t (39)
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It starts at position X, and after a time ¢ its new position
is X plus the distance it moved over, namely V(X)) times t.

Now let’s try to compute, at a later time, how many par-
ticles there are per unit Y. The variable Y is the new co-
ordinate of the particle at time ¢. We are interested in the
density at this later time t. What we want to compute is

dn

v (40)

What do we do ? What is the trick ? The trick is differentiate
equation (39) not with respect to time but with respect to
X. We get

ox - LT VI(X)t (41)

We simply differentiated both sides of equation (39) with
respect to X.

What is the next step ? We have dn/dX ; we have dY/dX ;
what we want is dn/dY. We can write

dn dn dX

- = == o 42

ay dX dy (42)
But dn/dX is 1, and dX/dY is just the inverse of what we
calculated in equation (41). So let’s put that in

dn 1
R — 4
dY 1+ VI(X)t (43)

Where do you think these bright spots are after time ¢7
They are where the denominator is equal to zero. The ratio
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dn/dY is the density after time ¢. Of course in the geome-
tric optics approximation, when the denominator is 0, we
are going to get something infinite. In the wave theory it
is not really infinite. Anyway we are going to get especially
bright spots, at the places where 1+ V'(X)t is equal to zero.
Let’s see if we can figure out what that looks like.

Let’s plot —V'(X), figure 25.

Figure 25 : Plot of —V/(X).

V’(X) varies around its mean. We can assume that its mean

is zero. And V'(X) fluctuates around 0. In some places it

is positive ; in some places it is negative.

And when does 1+ V/(X)t become infinite ? It is when
~V(X)t =1 (44)

The height, that is the time ¢ in this equation, acts like a
scaling factor. When ¢ is small, —V’(X)¢ is small, and never
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reaches 1. When ¢ increases, after say 10 seconds, the scaling
factor increases. Now the question is when —V/(X) = 1/10.

Eventually, after a certain amount of time, a first peak in
—V'(X)t will reach 1, figure 26.

Figure 26 : Plot of —V’(X) and of —V’(X)t for a given ¢.

What happens when —V’(X)t = 1?7 Then the denominator
on the right-hand side of equation (43) becomes 0. That is
where we get a lot of intensity.

We use the term intensity in a generic sense. If it was light
rays, it would actually be intensity ; we would get a bright
spot. If it is particles, we get a huge enhancement of the
particle density of that point.

If we go further in time, at the first bright spot in figure
26 the curve —V’(X)t will now go through the ceiling and
create two spots. Elsewhere there will be more bright spots.
These are caustics. Caustic means sharp. The caustics are
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the places where we see sharp features. At the bottom of
a one dimensional swimming pool the caustics are these
points where we get sharp light spots.

We can do the same exercise in two dimensions. We would
start with a two-dimensional space. The coordinate X would
actually represent two spatial dimensions, corresponding ei-
ther to a two-dimensional world or to the top of an ordinary
swimming pool. And we would evolve either in time or in
height along the third vertical dimension.

What we would see is basically figure 19. There would be
caustic lines of high intensity. And at the intersection of the
lines there would be points of extra high intensity. That is
indeed what we see at the bottom of the swimming pool,
figure 21. So we get a network of lines and spots, the hi-
ghest intensity being at the spots, high intensity along the
lines, and big voids of light in the regions in between.

In three dimensions we can play exactly the same game.
Now we are starting with a three dimensional world and
a uniform distribution of particles — in the sense of evenly
spread — but a velocity dispersion of the same kind as above.
What we will get is surfaces. The surfaces will be intersec-

ting other surfaces in a complicated form, like an aggregate
of soap bubbles °.

The caustics will be surfaces. The surfaces from time to
time and place to place will intersect along lines. And the
lines will intersect along points. That is what we see when

35. But the surface tension of soap bubbles will usually make them
distinguishable from a computer simulation of galactic caustic struc-
tures.
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we look at a computer simulation as in figure 20. We cannot
clearly see the surfaces because the image is in 2D. But we
do see the lines, and the hotspots where they intersect. And
it is easy to imagine in 3D the surfaces. They are caustics.

So this is what we would expect in a world without gravity.
No gravity has been invoked in the model. All that was
invoked is a somewhat random distribution of very small
velocities at the starting point.

Now it would not hurt to also have some variation in den-
sity along the X-space at time t = 0 or, equivalently, at the
initial height. It wouldn’t make much difference though. It
would basically be the same thing.

That is, if you like, a very simple but not wholly inaccurate
theory of the very large scale structures, caustics, that we
can observe when we look at the universe very very far —
when we look at what is called the deep sky.

On smaller scales of course gravity plays a big role. It causes
things to tend to condense into galaxies and so forth.

But the reason why I emphasize this story of caustics is
because we have to have a theory of this variation in the
initial velocity distribution, and where did it come from. We
said that we stretch the universe out to the point where it
is incredibly flat and uniform. So where does the starting
"random" 3¢ distribution of velocities come from ?

36. We use the word "random" for convenience. But remember that
randomness is essentially attached to experiments which can be repro-
duced, and which would produce different outcomes.
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That in itself is an inhomogeneity. So the next thing we are
going to study is the quantum origin of these inhomogenei-
ties in the universe, and how it lead to the starting point
for the filamentary structures and everything else in the sky.

These notes come from the site of the notetaker at https:

//www.lapasserelle.com/cosmology The next notes are
https://wuw.lapasserelle.com/statistical_mechanics
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