Lesson 1: Entropy and
conservation of information

Notes from Prof. Susskind video lectures publicly available
on YouTube

The section on Elementary Probability Theory, pages 7 to
20, has been developed by the notetaker from the original
lecture.



Introduction

Statistical mechanics is not really modern physics. It is pre-
modern physics; it is modern physics; and the reader can
be assured that it will be post-modern physics. The second
law of thermodynamics will probably outlast anything that
comes up.

Time and again, the second law of thermodynamics has
been sort of a guidepost, or our guiding light, to know what
we are talking about and to make sure we are making sense.

Statistical mechanics and thermodynamics' may not be as
sexy as the Higgs boson, but it is at least as deep. Many
would say a lot deeper. Particle physicists shouldn’t dis-
own me. It is a lot more general and it covers a lot more
ground in explaining the world as we know it. And in fact
without statistical mechanics we probably would not know
about the Higgs boson.

So what is statistical mechanics about? To answer this
question, let’s go back a step. The basic laws of physics,
Newton’s laws, the principles of classical physics, classical
mechanics, the topics that were treated in the classical me-
chanics course, the quantum mechanics course, the electro-

!The science of thermodynamics appeared at the beginning of the
XIXth century to improve the recently invented steam engine and to
explain its functioning on theoretical grounds.

Statistical mechanics — which is also sometimes called statistical
thermodynamics — appeared in the second half of the XIXth cen-
tury when it began to dawn on some physicists, chiefly the Austrian
physicist Ludwig Boltzmann (1844 - 1906), that the still controversial
atomic hypothesis provided wonderful new and clearer ways to un-
derstand thermodynamics, and conversely the successes of statistical
mechanics reinforced the atomic hypothesis.



dynamics course and so forth, in the collection The The-
oretical Minimum, those topics are all about perfect pre-
dictability.

Now you can object that in quantum mechanics we cannot
predict perfectly. And that is true. But there are some
things we can predict perfectly and those things are the
predictables of quantum mechanics.

In all these disciplines, we can make our predictions with
maximum precision, or maximal predictability, if we know
two things:

1. the starting point — which is what we call the initial
conditions — and

2. the laws of evolution of a system.

When working with a closed system, that is a system which
either comprises everything, or is sufficiently isolated from
everything else that external factors don’t influence it, if we
know the initial conditions exactly or with sufficient preci-
sion, and we know the laws of evolution of the system, then
we have complete predictability. And that is all there is to
say.

In many cases, of course, that complete predictability would
be totally useless. Having a list of the positions and veloc-
ities of every particle in the room would not be very useful
to us. The list would be too long, and subject to rather
quick changes as a matter of fact.

So we can see that while the basic laws of physics are ex-
tremely powerful in their predictability, they can also be



in many cases totally useless for actually analyzing what is
really going on.

Statistical mechanics is what we use in those cases. Let’s
say first of all that the mathematics of statistical mechanics
— statistical mechanics as applied to physical systems — is
just elementary probability theory. Some people go so far
as saying that statistical mechanics simply is probability
theory.

When is statistical mechanics applicable? It is when we
don’t know the initial conditions with complete perfection.
It may even be the case if we don’t know the laws of mo-
tion with infinite precision. And it is applicable when the
system we are investigating is not a closed system, that is
when it is interacting with other things on the outside.

In other words, in all those situations where ideal pre-
dictability is impossible, we resort to probabilities.

However because, for instance, the number of molecules in
the room is so large and probabilities tend to become very
precise predictors when the law of large numbers is appli-
cable, statistical mechanics itself can be highly predictable.

But that is not true for everything. As an illustration, let’s
say we have a box of gas — it might even be an isolated
closed box of gas. It has some energy in it. The particles
rattle around. If we know some things about that box of
gas, we can predict other things with great precision. If
we know the temperature, we can predict the energy in the
box of gas. We can predict the pressure. These things are
highly predictable. There are other things, as said, we can-
not predict.



We cannot predict the position of every molecule. We can-
not predict when there might be a fluctuation. Fluctuations
are phenomena which happen, which don’t really violate
probability theory, but are sort of tails of the probability
distributions. They are things which are unlikely but not
impossible. Fluctuations happen from time to time. In a
sealed room, every so often a density of molecules bigger
than the average will appear in some small region. Some-
place else molecules may be briefly less dense. Fluctuations
like that are hard to predict.

We can calculate the probability for a fluctuation. But we
can’t predict when and where a fluctuation is going to hap-
pen.

It is exactly the same sort of phenomenon which we observe
when flipping coins. Flipping coins is a good example — it
is probably a favorite one — for thinking about probabilities.

If I flip a coin a million times, you can bet that approxi-
mately half of them will come up heads and half will come
up tails, within some margin of error. But there will also
be fluctuations. Every now and then, if we flip the coin
enough times, 1000 heads in a row will come up.

Can we predict when a thousand heads will come up? No.
But can we predict how often a thousand heads will come
up? Yes. Not very often.

So that is what statistical mechanics is for: making sta-
tistical or probabilistic? predictions about systems which

2In this course we tend to use the two adjectives interchangeably,
although statisticians and probabilists make technical distinctions.



contain elements either too small, or too numerous, or for
any reason too difficult to keep track of. That is when we
use statistical mechanics, in other words probability theory.

We are going to go through some of the basic statistical me-
chanics applications. We will also cover the theory. We will
study the laws of thermodynamics, the laws of statistical
mechanics, and then see how they apply to gases, liquids,
solids. Occasionally we will look at quantum mechanical
systems, which were the subject of volume 2 in the collec-
tion The Theoretical Minimum.

Another striking feature of statistical mechanics that ought
to be mentioned is that all great physicists since the second
half of XIXth century were masters of statistical mechan-
ics. Why? First of all because it is useful, but second of all
because it is truly beautiful.

It is a truly beautiful subject of physics and of mathemat-
ics. And it is hard not to get caught up in it, hard not to
fall in love with it.

Let’s start this course with a brief review of the main con-
cepts of elementary probability theory.



Elementary probability theory
What is probability? And why does it work?

Everybody has some intuitive feeling about randomness.
Yet to many people it is not far from magic. And it is easy
to get tricked or make mistakes (see appendix at the end of
the chapter).

To say that probablity works means that if the probabil-
ity of some event is say 1/3, and we reproduce many times
the experiment producing the event, then it will happen
roughly one third of the times. But as we know, this doesn’t
always work nicely. Sometimes the event will happen more
often, or less often, than it should. These are exceptions.
And by definition of exceptions they are rare.

Any way we want to pinpoint a good definition of proba-
bility, it seems to escape like quicksilver. Our explanations
end up involving... probability. But let’s give it a try.

In nature there are experiments which, when we replicate
them, keep producing exactly the same results. They are
predictable or deterministic. They are those we mentioned
earlier, appearing for instance in classical mechanics when
we can apply Newton’s laws.

And there are experiments whose outcomes vary. Those are
said to be random. The randomness comes either from some
fundamental randomness of nature, like certain phenomena
in quantum mechanics, or from our incomplete knowledge,
as said, of the initial conditions or other things. Yet the
results display some experimental stability in the propor-
tions of occurences, when the experiment is repeated many
times, which we will come back to.
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This fundamental distinction established, to work with prob-
ability theory we need some primitive ideas about random-
ness, and then we need to construct a framework.

Figure 1: Rare events, and equiprobable events.

There are two primitive ideas, which we present with two
illustrative examples, figure 1:

1. Rare events: In an urn, suppose there is a very large
number of white marbles and one black marble. If we
plunge the hand in the urn without looking, and pick
a marble at random, then picking the black marble
would be rare, and we can "safely” count on picking
a white marble3.

2. Equiprobable events: If the possible outcomes of an
experiment display some symmetry, then each event

30me of the many counterintuitive aspects of probability, which
we will have to get used to, is that any marble, if we can distinguish
each of them, is rare. Yet we do pick one. Seen that way, whatever
outcome we obtain is rare. The paradox clears when we distinguish
states and events, which are explained in the sequel of the text.



is considered as likely as any other. Thus when we
spin the wheel on the right part of figure 1, and wait
until it has stopped and the fixed index points to a
color, the five colors are said to be equiprobable.

We mentioned the stability of the proportions of occurences,
in a random experiment reproduced many times. We intu-
itively — and correctly — feel that it is linked to the second
idea listed above. But we shall see in a moment that it is
also actually an instance of the first ¢dea about rare events.

Let’s now turn to the framework to work with a random
experiment and probabilities. The experiment itself is usu-
ally denoted £. Each time we reproduce &£, at the end of
the experiment the world is in some state w, which may be
different from replication to replication.

We are interested in some aspects of w: we may want to
measure some quantity which has a numerical value, or note
a color, or whatever. Sometimes we are interested in only
one feature of w and sometimes in several, like picking some-
one at random, in a well-specified procedure, and recording
both his height and weight, or level of income and academic
degree, or, of a more physical flavor, measuring the position
and velocity of a particle.

The main source of mistakes when working with probabil-
ities is the ill-definition of the experiment £. For instance,
when we simply say "let’s pick a person at random", it is
ill-defined. The experiment is not sufficiently specified. Do
we mean, in the room, or out of a subway entrance in New
York, and in that case in which district, at what time of
day, or in the United States, or on Earth?
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Another example, of impossibility this time, is when we
say "let’s pick a point at random uniformly over the entire
line". It is actually impossible. There is no such thing as
a density of probability with the same value from —oo to
+00*. So we have to be careful.

So, once the experiment £ has been specified, we consider
that each time it is performed, the world comes out in some
state w. The set of the w’s is denoted 2 and is called the
space of states, or set of states. Probabilists call it the uni-
verse of possible states attached to performing £.

We are interested in measuring some features, numerical
data or non numerical data, about w. Suppose we are in-
terested in a feature denoted X. It depends on w. In other
words it is a function of w. It is called a random wvariable
and the measurement made on a given w is denoted

X(w) (1)

It is the result, after having performed the experiment &
once, of the measurement of X on the state w that & pro-
duced.

X (w) takes its values in the set of possible outcomes of
X. Let’s denote it A. Mathematicians write that X is a
function from Q to A as follows

X: Q- A (2)

4But a sequence of densities can become more and more flat and
therefore with almost the same value — necessarily close to zero —
everywhere. Similarly, there is no such thing as a function whose
value is zero everywhere except at one point and whose integral is
one. But distributions, which are limits of functions, can be like that.
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The set A can be finite, infinite and countable, or infinite
and continuous.

For instance if the experiment &£ is the throw of a die, X is
the number shown on top after a throw, and the set A is

A={1, 2, 3, 4, 5, 6} (3)

In this case the abstract set {2 can just be taken to be the
set of results of throwing the die, i.e. Q = A itself. Then
the w’s are simply the six possible results, and we don’t
even have to think about X. It is simply the identity.

Although this simplification is often appropriate, it is bet-
ter — particularly when there are several random variables
that we want to measure on the outcome of £ — to clearly
distinguish the set of states €2 that is once and for all at-
tached to £ and the various sets of outcomes of random
variables.

Let’s stress again that A doesn’t have to be numerical. Our
die, for instance, could have faces painted with different col-
ors rather than bearing numbers.

Once &, Q, X and A have been defined, the last fundamen-
tal concept to introduce in the framework is a probability P.

Mathematicians technically talk about a measure of proba-
bility P on §2 that is o-additive, etc. And they introduce it
before any random variable. But in this review of elemen-
tary probability we don’t need to go into this. Furthermore
in an elementary approach, it may obscure the link with
probabilities as we intuitively know them.
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P is defined such that any subset of Q — called an event —
has a probability. In the case of the die, it is particularly
simple. Each w is itself an interesting event. There are six of
them. And if the die is well balanced they are equiprobable.
Thus we write

P{X =5} = % (4)

meaning that the probability of getting a 5, when throwing
the die, is 1/6. Events are any subsets of €2, not only the
w’s themselves. We can also write

PX <2} = (5)

The principle that symmetry, or equivalence somehow, be-
tween the possible states w implies equiprobability — in
other words, whatever makes them different doesn’t affect
their propensity to occur — is often invoked to figure out the
distribution of probability P attached to an experiment.
Another possible way to figure out P is through a large
number of replications of the experiment. We will explain
it in a moment.

Finally there may be various probabilistic calculations which
we can also make to relate the distribution of a random vari-
able X to those of other random variables we already know.
This pertains to the calculus of probability. And we shall
work out many examples in this course.

Our framework is now complete. It consists of a random
experiment £, a big set ) of possible states of the world
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after the performance of £, and a probability P.
framework = [ £, Q, P | (6)

And we are interested in measuring various random vari-
ables X, Y, Z, etc. after having performed £°.

Let’s now simplify a bit the setting and the notations. For
the time being, the set of possible states will be

Q={w, we, wa,.. wy } (7)

that is a finite set of outcomes of £. The states are indexed
by 4 running from 1 to n. For example, when flipping a coin
once, wp = heads, and wy = tails.

Later on, we will extend this to an infinite countable, and
then even an infinite countinuous set Q6.

Staying with a finite set {2, the probabilities of the single
states w;’s will simply be denoted

P(i) (8)

°In maths manuals, the reader will usually see the framework de-
scribed as [ 2, A, P ], the experiment £ not being mentioned — which
in our teaching experience is regrettable. And the extra 4, not to be
confused with the target set of any random variable, is the collection
of subsets of €2, but not quite all of them, only the "measurable" ones.
We won’t be concerned here with those subtleties.

5In this last case probabilities will be replaced by densities of
probability. Instead of considering P{X = z}, which will usually be
equal to 0, we will consider P{ X € [z, 2 +dz | } = p(z)dz. And,
following the custom, we will often still denote it P(z)dz, keeping in
mind that each random variable has its own density.
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They must satisfy
P(i)>0

Z P(i) =1 ©)

Indeed, probabilities are positive numbers. And the total
probability, when we add up the probabilities of all pos-
sibilities, should be equal to one. When performing £ we
certainly should get some result.

Probabilities have all sorts of interesting, beautiful and
sometimes surprising properties. The most useful one for
us in this course is the law of large numbers.

Here is what it says. Suppose that we either make many
replicas of the same system, or do the same experiment £
over and over a large number N of times, and we count
how many times we get the i-th outcome w;. That is some
count that we denote N;. Then the law says that

lim — = P(i) (10)

This is a statement about probabilities, which can be stated
more precisely and rigorously within the framework [ £, Q, P |.
But let’s approach it at an intuitive level. It says that
when we replicate £ a larger and larger number of times,
and measure the experimental frequency of occurence of the
i-th outcome, this experimental frequency gets closer and
closer to the actual probability P(7).

For instance, if we toss a coin a thousand times, the fre-
quency of heads will be close to 1/2. If we throw it 10 000
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times, the frequency will be even closer to 1/2. In each
case, it is only a probabilistic statement. There can be —
and in fact most of the times there will be — a discrepancy.
That discrepancy is itself a random variable. But it will
have a distribution more and more concentrated, relatively
to its range, around 0.

We said earlier that the convergence of experimental fre-
quencies toward their corresponding theoretical probabili-
ties is actually an instance of the rare event idea, see figure 1
and its comments.

The law of large numbers is neither magic, nor some kind
of eerie principle of nature. It stems from the fact that in
an urn with one black ball and very many white balls, if
we pick one at random, we can assume safely that we will
pick a white one. It is not always the case, but it will be
extremely rare to pick a black ball. And for all practical
purpose it can be neglected.

Let’s see why, in the case of tossing coins, the law is a sim-
ple result in numbering. Consider the experiment F which
consists in tossing the coin 1000 times, i.e. repeating £ 1000
times. The space Qr attached to F has 21990 elements —
that is a huge number. Each are equiprobable. When we
perform F once, i.e. when we repeat £ a thousand times,
we pick one element in Qr.

It turns out — and it is not hard to show, although we won’t
do it — that most elements in 0z contain about as many
heads as tails. View them as the white balls in the urn if
you like. And the black balls would be very few. So when
we pick one, we pick a white one.
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To try to shed even more light on the phenomenon, rather
than do some combinatorics, consider the 16 possible re-
sults, displayed below, of throwing the coin four times. The
reader can check that there is only one result with zero
head. Four results with 1 head. Six results with 2 heads.
Four results with 3 heads, and one result with 4 heads.

T, T, T, T
T, T, T, H
T, T, H, T
T, T, H, H
T, H T, T
T, H T, H
T, H H, T
T, H, H, H
H T,T, T
H T,T H
H, T, H T
H, T, H, H
H H T, T
H H T, H
H H, H T

So there is a kind of concentration around an equal number
of heads and tails. The counts of the number of heads ac-
tually correspond to the so-called Pascal triangle. They are
also the coefficients in the development of the polynomial
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(a 4+ b)N. The concentration about half and half is more
marked, of course, when N is larger than 4, and it grows
more and more marked as N increases.

That is what the law of large numbers is about. In prob-
ability theory, it is stated more rigorously than we have
done here. It is proved via an intermediate result called
Chebyshev inequality”. Tt is not particularly hard, and is
rather elegant. But it is outside what we want to do in this

review®.

The law of large numbers, expressed by equation (10), says
that the ratio N;/N converges toward P(i) when N gets
very large. In other words,

when we have repeated an experiment a large number of
times, we can use the experimental frequency N;/N of oc-
curence of the i-th outcome as an estimate of P(i).

We use this result all the time.

Now let’s go back to a random variable we want to mea-
sure, which is not the outcome of £ itself. To get closer to
physics concepts and notations, let’s call the random vari-
able F'. So let’s suppose that there is a quantity, denoted
F(i), that is associated with the i-th state w;. Recall ex-
pression (7) defining the set of states.

"Named after Pafnuty Chebyshev (1821 - 1894), Russian mathe-
matician.

8 Another beautiful and useful result is the Central Limit Theorem,
which shows in essence that the Pascal triangle looks more and more
like a bell-shaped curve called a Gaussian. And it is true in a much
more general setting than just flipping a coin many times.
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F' can be some meaningful physical quantity. We can also
make it up. For example if our system is heads and tails,
and nothing but heads and tails, we could assign

F(heads) = +1

F(tails) = -1 ()

If our system has many more states, we may want to as-
sign a larger number of possible values taken by F' — not
necessarily the same number as the number of elements in
Q though. F is simply some function of the states. We al-
ready mentioned this in expression (2), let’s write it again

F:Q— A (12)

The random variable F' acts on the set of states (2 and takes
its value in the set A. In the case of the coin, Q = {H, T},
and the set A in which F takes its values is {4+1, —1}.
Thus, we have made up a numerical random variable — or
measurement — attached to flipping a coin.

As said, F(i) can also be some meaningful physical quan-
tity. It could be the energy of the i-th state w;. Given
the state in which is some system, it has an energy. Its
measurement would perhaps be called in that case

E(i) (13)

Or it could be the momentum of the state. We would have
to choose a good notation not interfering with probabili-
ties. Or it could be something else. It could be whatever
we happen to like to measure on our system.
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Then an important quantity is the average of F'(i). We will
use the quantum mechanical notation for it, even though
we are not doing quantum mechanics. It is a nice notation.
Physicists tend to use it all over the place. Mathematicians
hate it. We just put a pair of brackets around F' to mean
its average. It is defined as follows

n

<F>= Y F@)P(i) (14)

i

In words, it is the average of the values F'(i) weighted by
their respective probabilities P(7).

Notice that the average of F'(i) does not have to be any
of the possible values that F' can take. For example, in
the case of the coin, where F(H) = +1, and F(T) = —1,
and we flip it a million times, and the probability is 1/2 for
heads and 1/2 for tails, the average of F' will be 0. It is
not one of the possible outcomes of F' in the experiment.
Yet it is its average. There is no rule why the average of
a measure should be one of its possible experimental values.

Thanks to the law of large numbers, we can write equation
(14) another way.

<F>~ ip(i)%ﬁ (15)

This approximate equality becomes a true equality in the
limit when there is a large number of measurement.

That is it for our mathematical preliminary. We need to
know what a random experiment is, what a probability is,
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what a random wvariable or random measurement is, and
what is an average, because we will use them over and over.

Now we shall go deeper into the link between probability
and symmetry. And we shall introduce time.

Probability, symmetry
and systems evolving with time

Let’s start with coin flipping again. For the usual coin, the
probability for heads is usually deemed to be 1/2, and the
probability for tails is usually also deemed to be 1/2. But
why do we think that? Why is it 1/2 and 1/2? What is the
logic there?

In this case it is symmetry. Of course no coin is perfectly
symmetric. Making a little mark on it, however tiny, to
distinguish heads and tails biasses it a little. But apart
from that tiny bias, for example a small scratch, the coin is
symmetric. Heads and tails are symmetric with respect to
each other. Therefore there is no rationale, when we flip a
coin, for it to turn up heads more often than tails.

So it is symmetry quite often — we might even say always,
in some deeper sense, but at least in many cases — which
dictates probabilities.

Probabilities are usually taken to be equal for configura-
tions which are related to each other by some symmetry.
Symmetry means if you act with a symmetry, if you reflect
everything, if you turned everything over, that the system
behaves the same way.
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Another example besides coin tossing would be die throw-
ing. Now the space 2, instead of having two states, has six
states. When we throw the die, and it has finished rolling,
the state it is in is the face showing up. To stress that states
don’t have to be numerical values, let’s consider a die with
colored faces, figure 2.

Bl

Yeuds o

Figure 2: Die with colored faces.

So here we don’t keep track of numbers. We keep track of
colors. The space of states is

Q = { red, yellow, blue, orange, green, purple } (16)

In other words, wi = red, we = yellow, w3 = blue, etc.

What is the probability that after a throw the die turns up,
for instance, blue like in figure 27 It is 1/6.

Why? Because there are six possibilities. They are all sym-

metric with respect to each other. We use the principle of
symmetry that tell us that the P(i)’s are all equal, therefore
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1
P(i) = G for all ¢ (17)

But what if the die is not symmetric? For example, if it
is weighted in some unfair way. Or if it is been cut with
faces that are not nice parallel squares, thus not making it
an honest cube.

Then symmetry won’t tell us anything. There are cases
where we may be able to use some deeper underlying the-
ory in which symmetry plays a role. But, in the absence
of such deeper information, there is no theoretical way to
figure out the probabilities.

In that case we resort to experiment. Do the experiment
& a billion times; keep track of the numbers; assume that
things have converged. And that way we measure the prob-
abilities and thereafter we can use them.

So either we have some symmetry, or some underlying the-
ory like in quantum mechanics, that tell us what the prob-
abilities are, or we do experiments to get them. Whatever
the case, we end up with probabilities.

Statistical mechanics tends to rely mostly on symmetry as
we will see. But if there is no symmetry to guide us in our
determination of probabilities then it is experiment.

Now there is another possible answer. This answer is of-
ten frequently invoked and it is a correct answer under the
circumstances. It can have to do with the evolution of a sys-
tem, the way a system changes with time. Let’s see some
examples.
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Let’s take our six-sided polyhedron, and assume that it s
not a nice symmetric cube. Furthermore suppose this ob-
ject has the following funny habit: when it is in one state,
it then jumps to another definite state, then to another def-
inite state, etc. It is called the law of motion of the system.

The law of motion of a system is that wherever it is —i.e. in
whatever state, also called a configuration — at one instant,
at the next instant it will be in some other state according
to a definite rule.

The time spent in each state is some seconds or some mi-
croseconds or whatever. And they are all equal. And for
simplicity the jumps are instantaneous. So we imagine a
discrete sequence. And let’s suppose there is a genuine law
that tells us how this funny cube moves around.

We have already described such a system evolving over time
in different contexts — in chapter 1 of volume 1 of the col-
lection The Theoretical Minimum, on classical mechanics,
for instance — but it is so important that I feel a need to
emphasize it again.

A law of motion is a rule telling us what the next configu-
ration will be, given where we are. It is a rule of updating
configurations. Here is an example. The letters are abbre-
viations for the colors in expression (16).

R—B
B—G
G—Y
Y —O0
O—P
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P—R

Given the configuration, that is the state, in which the sys-
tem is at any time, we know what it will be next. And we
know what it will continue to do.

Of course we may actually not know the law. Maybe all we
know is that there is a law of the type above.

Anyway, let’s draw the one above as a diagram, figure 3.

@)
® ©)

® 0
©)

Figure 3: Law of motion.

And we make the assumption that the same amount of time
is spent in each state.

We are not assuming that the cube has any symmetry
anymore. It may not be symmetric at all. Imagine that
the faces are not parallel, they are quadrilaterals but not
squares. Some are big, some are small. They may even be
not quite flat, etc. But figure 3 is the rule to go from one
configuration to another. And each step takes, let’s say, a
microsecond.
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We might have no idea when and in which state the system
began. But suppose our job is to catch it at a particular
instant and ask what the color is. Even though we don’t
know the starting point, we can still say that the probabil-
ity for each state is 1/6.

It is not related to any symmetry of the die, and as we said
the die may not be symmetric at all. But it is a conse-
quence of the symmetry of the time structure. As it passes
through the sequence of states, the die spends one sixth of
its time red, one sixth of its time blue, one sixth of its time
green, etc.

If we don’t know where it starts, and we take a flash snap-
shot, the probability will be 1/6 for each state”. Tt doesn’t
really depend on knowing the detailed law. For example the
law could have been different. Figure 4 shows a different
example

®
® ®

® 0
©

Figure 4: Another law of motion.

This shares with the previous law that there is a closed

9Here is a good example of the importance of specifying precisely
what is the random experiment £ that, at least in principle, we can
reproduce.

25



cycle of events in which we pass through each color once
before we cycle around.

We may not know which law of nature is for the system,
figure 3 or figure 4 or even another law which makes a com-
plete cycle through all the colors, but we can say again that
the probability will be 1/6 for each one of them.

So this prediction of 1/6 doesn’t depend on knowing the
starting point, and doesn’t depend on knowing the law of
physics. It is just important to know that there was a par-

ticular kind of law.

Are there possible laws for the system which will not give
us 1/67 Yes. Let’s write another law, figure 5.

©

Figure 5: Law of motion with two cycles.

This rule says that if we start with red, we go to blue. If
we are in blue, we go to green. And if we get to green, we
go back to red.

Or if we start with purple, we go to yellow. Yellow goes to
orange. And orange goes back to purple.
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Notice in this case, when we are on one of the two cycles,
we stay on it forever.

Suppose we knew we were on the upper cycle. It doesn’t
matter knowing in which state we started, but if we knew
that we started on the upper cycle somewhere, then we
would know that there is a 1/3 probability to be in the red
state when we flash the system, 1/3 probability to be in
blue, 1/3 probability to be in green. And of course there
is 0 probability to be in yellow, orange or purple, since we
are not on their cycle.

The probabilities 1/3, 1/3 and 1/3 to be in red, blue or
green are also called the conditional probabilities, given that
we know we are on the first cycle.

On the other hand, we could have started on the second
cycle. We could have started with purple. Or we might not
know exactly where we started, just that we started on the
lower cycle. Then the probabilities are: purple 1/3, yellow
1/3 and orange 1/3. And again, of course, 0 for the other
colors.

Now what about a more general case? It might be that we
know with some probability, that we started on the upper
cycle and with some other probability on the lower cycle.

In fact, let’s give the cycles labels. The upper cycle we call
+1. And the lower triangle we call —1. It is just attaching
to them a number, a numerical value. If we are on the up-
per cycle, something or other is called +1, and below it is
—1.
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Now we have to append something that we get from some
place else. It doesn’t follow from symmetry. And it doesn’t
follow from cycling through the system. It is the proba-
bility!'® that we are on cycle +1, or its complement to one
that we are on cycle —1.

Where might that come from? Well, flipping somebody
else’s coin might decide which of these two cycles we shall
be on. And the coin doesn’t have to be balanced. So we
have two more probabilities to consider:

P{ cycle=+1}

P{ cycle= -1} (18)

And they must add up to 1. These two probabilities are
not probabilities for individual colors. They are probabili-
ties for individual cycles.

Now what is the probability for blue? From his or her
elementary probability course, the reader should remember
that it is the product of the probability that we are on
cycle +1 times the conditional probability that we get blue,
conditioned on knowing that we are on cycle +1.

P{blue} = P{+1} P{ blue | + 1} (19)

10 Again, talking about a probability means talking about a ran-
dom experiment — at least an implicit one — that can be repeated.
This touches on the debate between Frequentists and Bayesians in
statistics. The latter are willing to consider probabilities of events
in experiments that can be performed only once, whereas the former
require that there exist a reproducible experiment. We refer the reader
to the statistics literature on the subject.
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where P{blue} is the overall probability to get blue, P{+1}
is an abbreviation for P{ cycle = +1 }, and P{ blue |+ 1}
is the standard notation for the conditional probability to
get blue given that we already know that we are on the first
cycle.

Since the three conditional probabilities, once we are on
cycle +1, are 1/3, formula (19) becomes

P{blue} = P{+1} % (20)

And we have similar formulas for the other colors. Of
course, in the case where P{+1} = 1/2, we get back to
P{blue} =1/6.

So in the case where there are several different possible cy-
cles, we would need to supply another probability that we
must get from somewhere else.

The example we just went through, with several cycles, is
what we call having a conservation law.

In our example, the conservation law would be just the con-
servation of the number assigned to the cycle. For red, blue
and green we have assigned the value +1. That 41 could be
the energy, or it could be something else, whatever. Let’s
just think of it as the energy to keep things familiar.

The energies of the three configurations in the upper cycle
might all be +1. And the energies of the three configura-
tions in the lower cycle might be —1. The point is that,
because the rule of motion keeps us always on the same
cycle, the quantity — energy or whatever — is conserved. It
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doesn’t change. That is what a conservation law is.

In summary, a conservation law says that the configuration
space divides up into cycles, or trajectories if they don’t
loop, and that in each of them a certain characteristic of
the configuration doesn’t change. While the system jumps
from configuration to configuration as time passes, it stays
on the same cycle or trajectory. As a consequence the quan-
tity, whose value is determined only by the cycle or trajec-
tory, is conserved.

The cycles don’t have to have equal size, figure 6.

Figure 6: Example of cycles with different size.

We could have a conservation law in this space of configu-
ration, if there is a quantity with one value for the upper
cycle, and another value for the lower cycle. The number
of states don’t have to be the same in each cycle. But still
there can be a conservation law.

And again somebody would have to supply for us some idea
of the relative probabilities of the two cycles. Where that
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comes from is part of the study of statistical mechanics.

Another part of the study has to do with the following ques-
tion: if T know I’'m on one of these tracks — another name
for cycles or trajectories — how much time do I spend with
each particular configuration?

That is what determines probabilities in statistical mechan-
ics: some probabilities, coming from somewhere, which tell
us the probabilities for different conserved quantities, and
then going from configuration to configuration through the
configuration space.

Questions / answers session

Question: So, we assunie that once we are on a given cycle,
the probabilities of all the configurations on that cycle are
the same?

Answer: Right. That comes from the fact that the time
spent in each state is the same.

We are in classical physics. Everything is deterministic.
The randomness that we introduce is only a consequence
of our imperfect knowledge of the initial conditions of the
system, or of the exact time at which we observe it.

Because we don’t have precise enough instruments, or be-

cause we are lazy, we don’t know exactly in which state the
system was at time zero, or we don’t know exactly the time

31



at which we take the measurement of the color.

Let’s focus on figure 3 where there is only one overall cy-
cle. Suppose we take a measure at time ¢. Suppose also we
know that the system started in state blue, and it stays one
microsecond in each state, and t = 2 minutes 17 seconds
754 milliseconds and 123 microseconds. Then it is easy
to calculate that the system should be in orange. But if
the precision of our timing is only one millisecond, taking
a flash!! of the system amounts to a random experiment
where the probability of each of the six states is 1/6.

That’s the circumstance that we are talking about.

Q.: If we take two pictures, presumably we will be able to
check that we staid in the same cycle?

A.: Oh yes. If there are several distinct cycles, like for in-
stance in figure 5, and we take two pictures one after the
other, the two colors we shall obtain will be on the same
cycle.

In fact, once we have made a first picture, we know in which
cycle we are, and there are no more probabilities for cycles
to heed. Now the probabilities are uniform over the config-
urations of the cycle we are on.

In other words, once you determine the value of some con-
served quantity, then you know it. And then you can reset

1 The flash is assumed to be instantaneous. There is no blur be-
tween several colors.
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the probabilities for the various possible configurations of
the system.

Let’s talk about honest energy for a minute. Suppose we
have a closed system. To represent the close system we just
draw a box

Figure 7: Closed system.

Now closed means that it is not in interaction with anything
else and therefore can be thought of as a whole universe
unto itself. It has an energy. The energy is some function
of the state of the system, whatever determines the state of
the system.

Now let’s suppose we have another closed system which is
built out of two, identical or not identical, versions of the
same thing.

If they are both closed systems there will be two conserved
quantities, the energy of the left system and the energy of
the right system. They will both be separately conserved.
Why? Because they don’t talk to each other. They don’t
interact with each other. The two energies are conserved.
And the probability frameworks for each system will just
be independent experiments and analyses.
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Figure 8: Two closed systems.

But now supposing they are connected by a little tube
which allows energy to flow back and forth, figure 9. Then
there is only one conserved quantity, the total energy, which
is sort of split between the two systems.

|

Figure 9: Two systems connected.

We can ask: given a total amount of energy, what is the
probability that the energy of one subsystem is one thing
and the energy of the other subsystem is the other?

If the two boxes are equal, we would expect that on the

average they have equal energy. But we can still ask what
is the probability that energy in the left box has such and
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such value, given some overall piece of information.

So, if we consider only the system on the left in figure 9,
that is a circumstance where the probability for which cycle
we are on may be determined by thinking about the system
as part of a bigger system. And we are going to do that.
That is important.

So in general, you need some other ingredients besides just
cycling around through the system, represented in diagram
5 or diagram 6, to tell you the relative probabilities of con-
served quantities.

This closes the questions / answers session. So we are off
and flying in statistical mechanics. Now let’s turn to some
fundamental laws, and in particular to some forbidden.

Bad laws of motion
and the —1%' law of physics

By bad laws, we don’t mean in the sense of DOMA'? or any
of those kind of laws, but in the sense that the principles
of physics don’t allow them.

If you have read our previous courses, particularly volume 1
of the collection The Theoretical Minimum on classical me-
chanics, you know that a bad law of motion is one that
violates the conservation of information — the most primi-
tive and basic principle of physics.

2Defense Of Marriage Act.
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Conservation of information is not a standard conservation
law like those we just studied, saying that there are certain
quantities which are conserved when a system evolves over
time through a cycle or any other kind of trajectory.

Conservation of information is the principle which says that
we can keep track of our trajectory both going forward and
going backward. We described it in detail in the classical
mechanics book, but let’s review it briefly.

Figure 10 below is an example of a bad law. There are six
states, or configurations, for the system, but the rule says
that wherever we are, the next state is red. Even if we are
at red, we go to red.

We readily notice that it is not reversible. We can follow
a trajectory when the time passes forward. It is very sim-
ple: we always end up at red and then stay there. But if
we look at the trajectory in reverse, with the time passing
backwards, it doesn’t correspond to a well defined law.

°) v

Figure 10: Example of bad law. It keeps track of where we go,
but not of where we come from.
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When we are at red, where would the law say we should go?
It wouldn’t say, because there are several arrows pointing
at red in figure 10, and therefore when we reverse time sev-
eral arrows would leave red for different states. That would
not be a law at all, because in physics a law of evolution
must be deterministic'3.

In other words, the law in figure 10 is bad because it loses
track of where we started and therefore is not reversible.

We could make it more complicated, and which still loses
track of the past, if we wanted to. But the story would be
the same. A law must be deterministic, and it must be re-
versible. This second characteristic is equivalent to saying
that we don’t lose track of the past.

We can express the principle simply:

A good laow of motion is one such that for each state, one
and only one arrow arrives at it, and one and only one ar-
row leaves it.

The laws in figures 3, 4, 5 and 6, were all good laws accord-
ing to this principle. In any of those examples, if we start
from any state S; and go, say, 56 steps forward and end up
in state So, then starting from S, and going backward 56
steps we will end up in state S7. They don’t lose informa-
tion.

13Remember that even in quantum mechanics laws of motion are
deterministic. When a system is in a state 1 (¢), Schrédinger’s equa-
tion tells us in which state ¢ (¢t+dt) it is going to be next. Measures of
observables don’t give deterministic results. But that is another story.
In quantum mechanics states and measures are different things, see
volume 2 in the collection The Theoretical Minimum for details.
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The law in figure 10 loses information. That is exactly the
kind of thing that classical physics doesn’t allow. Quantum
physics also doesn’t allow laws of motions that are not de-
terministic in the future, or not deterministic in the past,
i.e. not reversible.

There is no name for this law because it is so primitive
that everybody always forgets about it. But I call it the
—15% law of physics. 1 wish that it would catch on, that
people would start using it, because it is the most basic law
of physics, that information is never lost'.

The —15¢ law says that distinctions or differences between
states propagate with time. Nature never loses track of the
difference between two states. In principle, if we have the
capacity to follow the system, from wherever we are we will
always know exactly where we go, as well as where we come
from. Because we don’t have the appropriate instruments,
or we are too lazy, we may lose track, but nature doesn’t
have this problem and keeps distinctions. And in principle
we could too because nature — by definition — doesn’t hide
anything from us.

To a physicist or a natural philosopher it doesn’t make sense
to say that some things are, or have been in the past, but
we cannot one way or another be aware of them. Thus we
see that the —15% law is not a stringent requirement. It is

"1t was the crux of a debate between Stephen Hawking and
Leonard Susskind on black holes. S. Hawking maintained that when a
black hole absorbed an object information was lost. L. Sussking main-
tained that it was a violation of the —1°° law and therefore was incor-
rect; the information must be preserved somewhere. See L. Susskind’s
book The Black Hole War, Back Bay Books, 2009.
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at the foundation of what knowledge means, as opposed to
phantasmagoric beliefs.

In continuum classical mechanics, there is a version of this
law. It is called Liouville’s theorem®. We studied it in
classical mechanics, see volume 1. We will take a second
look at it in this lesson, after we have introduced entropy.

Let’s see an apparent counterexample to Liouville’s theo-
rem. Friction seems to be such a case. If we consider an
object sliding with friction, it eventually comes to rest. It
is sort of equivalent to always ending up at red in figure 10.
That seems like a violation of the law that tells us that the
distinctions have to be preserved.

But of course it is not really true. What is really going on
is that as the object slides, decelerates and stops, it is heat-
ing up the surface on which it slid. If we could keep track
of every molecule we would find out that the distinctions
between trajectories is recorded. In other words, two differ-
ent starting states of the universe would lead, when taking
into account everything, to two different ending states of
the universe, even if the object ends up at the same place.

Let’s imagine now that there was a fundamental law of
physics for a collection of particles. The particles are la-
beled by an index n, they each have a position x,,, possibly
multi-dimensional, depending on the time ¢. And they sat-
isfy the equation
2
LA (21)
5Named after Joseph Liouville (1809 - 1882), French mathemati-
Cclan.
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The left-hand side is acceleration. And the right-hand side
corresponds to a frictional force opposing motion. The fac-
tor v is the viscous drag. We could put masses on the
left-hand side multiplying the second derivative, but that
would not change anything for our purpose, so let’s take
them all equal to 1.

Again this is friction. Equation (21) has the property that
if we start with a moving particle it will very quickly come
almost to rest. It will exponentially come to rest, and that
will happen fast if there is a significant drag.

Imagine that all the particles, in a gas for example, satisfied
this law of physics. It is perfectly deterministic, back and
forth. It tells you what happens next, and it is reversible.

But it has the unfortunate consequence that every parti-
cle almost comes to rest. That sounds odd. It sounds like
no matter at what temperature we start the room, it will
quickly come to zero degree. It does not happen that way.

Equation (21) is a perfectly good differential equation. But
there is something wrong with it from the point of view of
conservation of energy, and from the point of view of ther-
modynamics.

If a closed system starts with a lot of kinetic energy — we
usually call it temperature —, it doesn’t evolve to zero tem-
perature. That is not what happens.

And it is not only a violation of energy conservation, it also

looks like a violation of the second law of thermodynamics.
Equation (21) describes a process where things get simpler.
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We start with a random bunch of particles moving in ran-
dom directions, and we let it run, and they all come to rest.
What we end up with is simpler and requires less informa-
tion to describe than what we started with. It is very much
like, in figure 10, everything going to red.

The second law of thermodynamics generally says things
get worse. Things get more complicated not less compli-
cated. So even though it is mathematically sound, deter-
ministic in the future and in the past, equation (21) is not
a good law of physics in view of the law of conservation of
information.

We saw that one way to express the —15 law, or law of
conservation of information, is to say that every state must
have one arrow coming in and one arrow going out. There
is another important way to formulate it.

Conservation law and probability

Let’s consider a system and the collection of states or con-
figurations, indexed by 4, it can be in. And we assign prob-
abilities, P(1), P(2), P(3), etc. that is, probability, when
we look at it, that the system be in state 1 — earlier called
w1 —, probability that the system be in state 2, probability
that it be in state 3,... for some subset of the complete set
of possible states. All the others, we say that they have
probability zero.

For example, we can take our colored die in figure 2 and
assign red, yellow and blue, each probability 1/3. And the
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other three colors have probability zero. Where we got that
from? It doesn’t matter. We got it from somewhere. Some-
body secretly told us in our ear: "It is either red, yellow or
blue, but I'm not going to tell you which."'6

Now we follow the system as it evolves in time. The system
evolves according to whatever law of physics, as long as it
is an allowable law of physics.

After a while, suppose we are capable of following it in
detail. We are no longer constrained by our laziness or
inaccurate instruments in this case. Then what are the
probabilities at a later time?

Well, if we don’t know which the laws of physics are, we
can’t say of course. But we can say one thing: we can say
there are three states with probability 1/3, and three states
with probability zero.

They may get reshuffled, which ones are probable and which
ones are improbable. But after a certain time, there will
continue to be three states which have each probability 1/3

'6The upper face of the die actually shows one color, that is the
die is in one specific state, but for some reason we don’t know it. We
only know the partial information given by the chap.

We could also imagine the die having three faces with three shades
of green, and the others with three shades of purple. And, because
we did not take a good enough look, we only got the general color of
the state, not the precise shade.

And to avoid being in a Bayesian setting where probabilities don’t
correspond to any reproducible experiment — and therefore, to many
of us, would be meaningless —, let’s imagine that at least theoretically
we could play the game many times and those three colors would turn
up randomly with three equal probabilities, because the die is loaded
or for any other reason.
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and the rest probability zero.

Let’s be very precise, because when talking about proba-
bilities it is easy to trip into confusion. If we reproduce the
experiment many times here is what will happen. And we
suppose we have omnipotent observational powers of colors
and time. At first the three colors red, yellow and blue are
the possible initial colors. So they will each appear roughly
one third of the time. And after a specific time ¢, that is a
specific numbers of steps, the three corresponding states af-
ter time ¢ will also appear — necessarily — roughly one third
of the time. There is no loss of information, even though
the initial conditions are random between three states from
our point of view.

So in general we could characterize these information con-
serving series as follows. We have a total number of states
N, and a number of possible states M.

N = total number of states

M = number of possible states

M<N (22)
1

pP=_
M

The number of possible states stays the same over time —
even though they may get reshuffled among the N states
as time passes. And of course, at a given time, the prob-
ability of any of the possible states at that time is P = 1/M.

That is a different characterization of the information con-
serving law. It introduces probability, but it specifies that
the randomness over initial conditions is carried along with
time, with no further loss. Then the number of states which
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have non-zero probability will remain constant and their
probabilities will remain equal to 1/M.

As we have described, these possible states may reshuffle as
time passes, but the number with non-zero probability will
remain fixed!?.

For the information non-conserving laws every configura-
tion goes to red. In figure 10, we may start with a prob-
ability distribution that is for instance 1/3 for red, green
and purple and 0 for the others. And then a little bit later
there is only one state that has a non-zero probability. And
that is red.

So we now have another way to describe information con-
servation. And we can quantify that. Let M be the num-
ber of states which are possible, and let’s assume they all
have equal probability. These states have a name. They
are called the occupied states — states which have non-zero
probability, with equal probability. Again these may shift
around as time passes. But M doesn’t change.

What is M characterizing? M is characterizing our igno-
rance. The bigger M is, the greater is our ignorance. If
M 1is equal to N, that means equal probability for every
configuration, or maximal ignorance.

17 As already explained, if we could reproduce the random ezperi-
ment generating these probabilities, and we had omnipotent powers
to measure time and states, we would see that at time 0 a certain set
of M states occur more or less equally frequently, the others having 0
probability. And at another time ¢, it would be another set of states
which would be possible, the others having 0 probability. This other
set would have the same number M of states as a consequence of the
conservation of information, and they would still be equiprobable.
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If M is equal to N/2, that means we know that the system
is in one out of half the states. We are still pretty ignorant,
but we are not that ignorant. We are less ignorant.

What is the minimum amount of ignorance we could have?
That is when we know precisely, at any time, in which state
the system is. In that case M = 1. That is when we have no
ignoramnce resulting from one cause or another. You could
say that we are then the omnipotent observer that we talked
about in explaining the probabilities attached to the occu-
pied states.

So M, in relation to IV, is a measure of our ignorance. And,
associated with it, is the concept of entropy.

Entropy

We come to the concept of entropy. Notice that entropy
is coming before anything else. Entropy is coming before
temperature. It is even coming before energy. Entropy is
more fundamental in a certain sense than any of them.

But it is also different from temperature or energy in the
sense that it is not an absolute characteristic of the system
— irrespective of what the observer is or does —, but is a
characteristic of the system plus the observer. This will be-
come clear in a moment.

The entropy is denoted by the letter S, and it is defined as
the logarithm of M:
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S =log M (23)

It is the logarithm of the number of states that have an ap-
preciable probability, more or less all equal, in the specific
circumstances that we described.

When there is no loss of information, the entropy S is con-
served. All that happens is that the occupied states reshuf-
fle. But there will always be M of them with probability
1/M. That is the law of conservation of entropy — if we can
follow the system in detail'®.

Now of course in reality we may be again lazy, lose track of
the system. We might have, after a point, lost track of the
equations, lost track of our timing device, and so forth and
so on. Thus we may have started with a lot of knowledge
and wind up with very little knowledge.

That is not because the equations cause information to be
lost'®, but because we just weren’t careful. Perhaps it is
impossible to be perfectly careful — to be an omnipotent

'8There is a subtle point here. Think, for a moment, that the initial
randomness is not due to our imperfect observations but to some
other cause. Randomness in the initial conditions means that if we
reproduce the experiment with the system, they will be different. But
they belong to a set of M initial states. Then, if we can observe things
precisely, this randomness propagates with no loss of information as
time goes on. Thus, if there is no loss of information, entropy is
conserved.

19Tndeed the laws in physics are deterministic. And the equations
used to describe them are deterministic too. But the lack of precision
in our observations can generate the equivalent of randomness in ini-
tial conditions, or in measurements at time ¢. And the lack of precise
information might worsen.
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observer —, perhaps there are too many degrees of freedom
to keep track of.

So when that happens, the entropy increases. But it simply
increases because our ignorance has gone up, not because
anything has really happened in the system. If — the initial
randomness being a given — we could follow it, we would
find that the entropy is conserved.

That is the concept of entropy in a nutshell. We are going
to expand on it a lot. We are going to redefine it with a
more careful definition.

What does entropy measure? It measures approximately
the number of states that have a non-zero probability. The
bigger it is, the less we know.

What is the maximum value of S7 It is log N. Now of
course N could be infinite. We might have an infinite num-
ber of states, and if we do then there is no upper bound to
the amount of our ignorance. But when studying a closed
system with only IV states our ignorance is bounded. So
the notion of maximum entropy is also a measure of how
many states there are altogether.

We said that entropy is deep and fundamental — and so it
is. But there is also an aspect to it which makes it in a
certain sense less fundamental. It is not just a property of
the system. This is a very important point worth stressing:

Entropy is a property of the system and our state of knowl-
edge of the system.
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It depends on two things. It depends on characteristics of
the system, and it also depends on our state of knowledge
of the system. The reader should keep that in mind.

Now let’s talk about continuous mechanics.

Continuous mechanics, phase space,
and Liouville’s theorem

We want to talk about the mechanics of particles mov-
ing around with continuous positions, continuous velocities.
How do we describe that? How do we describe the space of
states of a mechanical system?

We already studied that in volume 1 of the collection The
Theoretical Minimum on classical mechanics. So this sec-
tion will begin as a review for the readers who have studied
our volume on classical mechanics. Then we will show the
important relationship between Liouville’s theorem and en-

tropy.

We describe real mechanical systems, particles and so forth,
as points in a phase space®’. The phase space consists of
positions and momenta. In simple contexts, momentum is
mass times velocity. So we can also say, roughly speaking,

2ONote on terminology: sometimes the term configuration space
refers only to positions, as we did in volume 1; and sometimes it
refers to positions and momenta, in which case it is another name for
the phase space. Anyway, phase space is the usual and unambiguous
name for the space of positions and momenta.
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that the phase space is the space of positions and velocities.

That is sufficient when considering a system consisting of
particles moving about, with positions x; and velocities x;,
like for instance a gas. When considering more complex
systems, the degrees of freedom x; may be more abstract.
They are then usually denoted ¢;. And the generalized mo-
mentum conjugate p; attached to the degree of freedom g;
is defined as p; = 0L/0¢;, where L is the Lagrangian of the
system, see volume 1 chater 6.

Figure 11 shows the phase space for a system made of a
large number of particles. The i-th particle?! has position
z; and momentum p;.

fu

Figure 11: Phase space for a system of particles.

The vertical axis is for the momenta p;’s. And as usual

' Even though we use the same letter, don’t mix up the i-th particle
and the i-th state of the system. The i-th particle, we will soon forget
about it. But the i-th state of the system is a very important concept
in statistical mechanics.
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this axis is a stand-in for all of the momentum degrees of
freedom, that is all the p;’s. If there are 10?3 particles there
are 10%% p’s. And each of them is actually a vector of three
values. But we can’t draw more than one of them. Well,
we could draw two of them but then we wouldn’t have any
room for the ¢’s, that is for the z’s.

Horizontally we record the positions ¢;’s of the particles.
But here we simply denote them x;’s. And again the hori-
zontal axis is a stand-in for the large number of dimensions
corresponding to all the particles. So we just write z to
mean all the particles positions.

Let’s start with the analog of a probability distribution,
which is constant, that is equiprobable, on some subset of
the total set of states of the system, and is zero on the re-
maining states.

We can represent that by drawing a sub-region in the phase
space, figure 12.

71,

Figure 12: Phase space. Sub-region of possible states. Photo-
graph at time ¢.
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In the sub-region shown in figure 12, all the states have
equal probability. The time is fixed for the moment. That
is, at that time ¢, the system can be in any of the states
in the patch, equally probably for each of them. And the
probability that the system be outside is zero.

That is the sort of situation where we may have some in-
formation about the particles, but we don’t know exactly
where each of them is and with which velocity. For exam-
ple we know that all the particles in the room are... in the
room. In fact we know quite a bit more than that. We
know that they are more or less evenly spread out in the
volume of the room. We will formalize it, but let’s go one
step at a time.

Let’s note, to start with, that knowing that the particles are
in the room puts some boundaries on where z is in figure
12. Remember that we now call x the entire collection of
positions of the particles. z is a unique multi-dimensional
variable attached to the state of the system. And for conve-
nience we represent it as a simple number on the horizontal
axis.

We may also know that all of the particles have momenta
which are within some range. That also confines them be-
tween values on the vertical axis.

So a typical bit of knowledge about the particles in the room
might be represented, at least approximately, by saying that
there is a zero probability that the system be outside the
region shown in figure 12, and a uniform probability over
all the states within the region.
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Now the system evolves over time. As the system evolves
x and p change. Over a period At, each point in the sub-
region in figure 12 will go to another point elsewhere in the
figure, not necessarily in the initial region. Points nearby
will go to points nearby. The whole sub-region — also called
the occupied patch — will flow to another region with a pos-
sibly different shape.

The motion of the system with time is almost like a fluid
flowing in the phase space. We think of the points of the
phase space as fluid points moving with time. So the occu-
pied patch flows to another occupied patch, figure 13.

And just like there was equal probability for the system to
be at any point in the initial patch in figure 12, after At
there is equal probability for the system to be at any point
in the new patch, wherever it is and whatever its new shape
s now.

Figure 13: Flowing of the occupied patch in the phase space.

In truth we are in a continuous situation, and probabilities
should be replaced by densities of probabilities multiplied
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by small volumes, but the reasoning is the same.

There is a theorem that goes with this flowing. It is called
Liouville’s theorem. It says that the volume of the occu-
pied patch is conserved, that is, remains constant over time.

In figures 12 and 13 the patches are surfaces and their vol-
umes are actually areas. But remember that the figures are
simplified representations. The x axis can be high-dimen-
sional, and so is the p axis with the same dimension. So the
volume of the patch is actually a doubly high-dimensional
integral.

Liouville’s theorem is the subject of chapter 9 in volume 1
of the collection The Theoretical Minimum on classical me-
chanics. What it tells us is that whatever the initial patch
evolves into, it is into something of the same volume, in
other words figuratively speaking the same number of states.

It is the immediate continuous analog of the discrete situ-
ation where, if we start with M states and we follow the
system according to the equations of motion, we will occupy
the same number of states afterwards, as we started with.
They will be different states, but the motion will preserve
the number of them and the probabilities will remain equal.

Exercise 1: Explain what is the random experi-
ment, implicitely referred to, when we say that
the probabilities of the states in the occupied
patch remain the same.
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Hint: Start with the discrete case corresponding to
formulas (22), and then go to the continuous case of
figure 13.

Exercise 2: Explain why and how these proba-
bilities express our ignorance.

Exercise 3: Finally explain how Liouville’s the-
orem expresses the conservation of entropy in
the case where we can follow the evolution of
the patch.

Let’s stress that Liouville’s theorem not only says that the
volume of the occupied region will stay the same as it flows,
but also, a little bit better, that if we start with a uniform
probability distribution, it will remain uniform.

So there is a very close analogy between the discrete case
and the continuous case. And Liouville’s theorem is what
prevents a system from evolving according to an equation
like equation (21) where everything comes to rest. That
can’t happen.

Let’s see more precisely why it can’t happen. In figure 13,
imagine that no matter where we started, we ended up with
p = 0. That would mean every point of the occupied patch
got mapped onto the = axis. Its area would go from some
positive value to zero. But Liouville’s theorem prevents
that.
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What Liouville’s result says in fact is if the blob squeezes
in one direction, it must expand in another direction, like
a drop of water trapped beneath a plastic film coating a
surface, which we can move around but not remove.

Let’s think of Liouville’s theorem in the context of an eraser
sliding on a table top, slowing down and coming to rest. So
we consider that we don’t know exactly the state of the sys-
tem, and therefore it is in a patch like in figures 12 and
13. If, in the phase space, the components of the eraser get
shrunk because it stops, it means the components of some
other elements of the system [ eraser -+ table | in the phase
space must expand. It is the p’s and z’s of the molecules
that are in the table.

For the case of the eraser sliding on the table, there is re-
ally a very high dimensional phase space. And as the eraser
may come to rest, or almost rest, so that the phase space
squeezes one way, it spreads out in another direction having
to do with the other hidden microscopic degrees of freedom.

Our possible partial ignorance about the exact position and
velocitiy of the eraser cannot vanish as it stops. At the
least, it is transferred as an increased partial ignorance
about the exact positions and velocities of the molecules
of the table top. So if we can — as an omnipotent observer
— keep track of the system the entropy is conserved.

As the reader may be aware of, we will see that it can also
go up. That will be the subject of the second law of ther-

modynamics.

We now know how the —15 law of physics, about conser-
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vation of information, is expressed in the context of statis-
tical mechanics and imperfect knowledge of all the degrees
of freedom describing a system.

To follow the order of the laws of thermodynamics, let’s
talk briefly about the zeroth law. Then we will talk about
the first law, and then about the famous second law of
thermodynamics.

Zeroth law of thermodynamics

The zeroth or 0-th law of thermodynamics has to do ther-
mal equilibrium. We haven’t explained what a thermal
equilibrium is, but we can already give an intuitive idea,
and give a preliminary statement of the zeroth law.

A gas in a vase is in thermal equilibrium if all its molecules
moves around in such a way that the global distribution of
their positions and velocities somehow doesn’t change over
time. And the concept can be applied to any system.

Similarly, we say that two systems A and B are in thermal
equilibrium with each other if, when put in contact so that
they can exchange energy, the global distributions of the
positions and velocities of the molecules in each of them
don’t change.

The zeroth law of thermodynamics says that if we have sev-

eral systems, and system A is in thermal equilibrium with
B, and B is in thermal equilibrium with C, then A is in
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thermal equilibrium with C.

We will come back to that. Let’s just keep it in the back of
our mind for the time being, because we haven’t described
what thermal equilibrium precisely is. But having gone
through the —15¢ and the zeroth laws, we can now jump to
the first law.

First law of thermodynamics

The first law is simply energy conservation, nothing more.
It is really simple to write down. But its simplicity belies
its power.

It is the statement that, first of all, there is a conserved
quantity. And the fact that we call that conserved quantity
the energy will play for the moment not such a big role.
But let’s just say there is energy conservation.

How is that expressed? As we can guess, whatever the
energy F is, the equation is written

dE
— =0 24
o (24)

Now this is the law of energy conservation for a closed sys-
tem.

If a system consists of several parts in interaction with each
other, then of course any one of the parts can have a chang-
ing energy. But the sum total of all of the parts will con-
serve energy.
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A B

Figure 14: Two systems forming altogether one closed system.

For instance, in the system represented in figure 14 we have

dEs  dEp

A8 2
dt dt (25)

We could have written that the sum of the two derivatives
is equal to zero, but equation (25) emphazises that what
energy we lose on one side we gain on the other.

That is the first law of thermodynamics. That is all it says.
The total energy of a closed system is conserved.

Now in the context of figure 14 there is a slightly hidden
assumption. We have assumed that, if the system is com-
posed of two parts, its total energy is the sum of the energies
of each parts. That is really not generally true.

If you have two systems and they interact with each other,
there maybe for example forces between the two parts. So
there might be a potential energy that is a function of both
of the coordinates.

For example, let’s look at a closed system made of two par-
ticles orbiting around each other, or, say, a simplified Solar
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System made of the Sun and the Earth. The energy consists
of the kinetic energy of one body plus the kinetic energy of
the other body plus a term which doesn’t belong to either
body. It belongs to both of them in a sense. It is the po-
tential energy of interaction between the Sun and the Earth.

In that context we really can’t say that the energy is the
sum of the energy of one thing plus the energy of the other
thing. Energy conservation is still true, but we can’t divide
the system into two parts as in figure 14.

On the other hand, there are many contexts where the inter-
action energies between subsystems is negligible compared
to the energy that the subsystems themselves have.

If we were, for instance, to divide the table in front of us
up into blocks. How much energy is in each block? Well,
the amount of energy that is in each block is more or less
proportional to the volume of each block.

How much energy of interaction is there between the blocks?
The energies of interactions are surface effects. They inter-
act with each other because their surfaces touch. And typ-
ically the surface area is small by comparison with volume.

We will come back to that. But let’s keep in mind that in
many contexts, the energy of interaction between two sys-
tems is negligible compared to the energy of either of them.

When that happens we can say to a good approximation
that the energy of a system made of two parts can just be
represented as the sum of the energies of each part, plus
a teeny little thing which has to do with their interactions
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and which we omit. In those circumstances, the first law of
thermodynamics is often expressed with equation (25).

In summary, equation (24) is always true, while equation
(25) has that little caveat that we are talking about systems
where energy is strictly additive.

Now let’s return to entropy.

More on entropy

We are not finished with entropy. We have introduced it.
We have also talked about energy. Notice that we haven’t
talked about temperature yet. Temperature comes in be-
hind entropy.

Indeed temperature is a highly derived quantity. By that
we mean that, despite the fact that it is the characteristic
of a system we can readily feel with our body, so it is very
intuitive and appears fundamental, it is actually a concept
derived mathematically from the motion and kinetic energy
of molecules, less primitive and less fundamental than ei-
ther energy or entropy. It will be the subject of chapter 2.
For the moment we shall go deeper into entropy.

We defined entropy. But we did it only for certain special

probability distributions. Let’s represent it schematically,
figure 15.
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M ocmped afabes

Figure 15: Equiprobable distribution over the set of occupied
states.

On the horizontal axis are laid out the different states la-
belled by their index ¢. And vertically we plot their prob-
ability. The probability distributions we considered are
those such that inside a subset of occupied states all the
probabilities have the same positive value, and outside the
probabilities are zero. If there are M occupied states, the
probability of each of them is 1/M.

Then we defined the entropy as

S =log M (26)
That is, in the case where the distribution of probability is
uniform over all the occupied states, the entropy is simply
the logarithm of their number.
Generally speaking, however, we don’t have probabilities

evenly distributed like in figure 15. We have probability
distributions which are more complicated. In fact they can
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be anything as long as they are positive and all add up to 1.
Let’s draw another one, and for simplicity, even though we
are in a discrete case, let’s draw it as a continuous curve.

Py

L
Figure 16: General distribution of probabilities over the states.

So the question is: How do we define entropy in a more gen-
eral context where the probability distribution looks some-
thing like in figure 16 or has an even more odd shape?

In this lesson, we won’t construct logically the formula.
I will just give the definition. We will check that, in the
equiprobable case, it corresponds to equation (26). Then
our objective will be to get familiar with it and begin to see
why it is a good definition.

It is representing something about the probability distribu-
tion. It is in some sense the average number of states which
are importantly contained inside the probability distribu-
tion in figure 16.

The narrower the probability distribution, the smaller the

entropy will be. The broader the probability distribution,
the bigger the entropy will be. In other words, a spread
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out distribution will correspond to a high entropy, while a
narrow distribution over a small number of states will cor-
respond to a small entropy.

The formula for the entropy S attached to a probability
distribution of P(4)’s is

S=—Y_ P(i) log P(i) (27)

)

Remembering formula (14) for the average of a function
F(i), we see that formula (22) can actually be read as the
average of the function log P(i). It is worth emphasizing:

The entropy of a distribution P is the average of log P.

Let’s see what this yields in the special case where the prob-
ability distribution is 1/M, over M states.

For the unoccupied states the term P(i)log P(i) looks like
it is going to cause a problem. It is zero times logarithm
of zero. Of course logarithm of zero is not defined. The
limit when P tends to 0 of log P is minus infinity. But the
logarithm grows, in the negative numbers, to infinity much
slower than P goes to zero. So Plog P goes to 0. It is
left as a little exercise for the reader to show that. So in
general the contribution from states with very small proba-
bility will be very small, and by continuity the contribution
of unoccupied states will be zero.

Now what about the states which have positive probability

in the equiprobable case? The probability of each one is
1/M. So formula (27) becomes
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S=->)" % 1og<z\14>

i=1

Then, noting that log(1/M) = —log M, summing the M
terms which are all the same, thus getting rid of the factor
1/M, and cancelling the minus signs, we get

S =log M
which is formula (26) again, as we want.

Notice that the minus sign in the general definition (27) for
the entropy is there simply because P(i) is always less than
one, therefore all the log P (i) are negative. If we want the
entropy to be a positive number, we have to introduce a
minus sign in its definition.

Our new definition now makes sense even when we have
a more complicated probability distribution than just uni-
form over the occupied states. We will discover, as we use
it, that this average of log P is a good and effective defini-
tion.

Notice that entropy is associated with a probabilitiy distri-
bution. It is not something like energy which is a property
of the system itself. 1t is not a thing like momentum. En-
tropy is associated with our imperfect knowledge of which
state the system we are considering is in.

This idea requires some getting used to. When we consider

a system whose state is perfectly known, there is no con-
cept of entropy. Or rather the entropy is zero. The reader
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should check that it is consistent with formula (27).

When we consider a gas made of a very large number of
molecules in a box, and it is in thermal equilibrium — assum-
ing for the moment we intuitively know what that means —,
at the same time we feel that we know well in which state
it is, described by volume, pressure, temperature, etc. as
classical thermodynamics tells us, but we must also admit
that it is only a statistical knowledge over a large number
of possible exact configurations of positions and velocities
of the molecules. And that is so even without taking into
consideration the further limits imposed, at a much higher
level of precision, by quantum mechanics on the simultane-
ous knowledge of positions and momenta.

So entropy is a special kind of measure. It is a measure
of our only statistical knowledge. It is not a pure measure
attached to the system itself. It involves and reflects the
incomplete knowledge we have of it.

We must develop a familiarity with this probability distri-
bution representing our imperfect knowledge of the system.
Once in a while the reader should go back to the funda-
mental questions: What is the random experiment that is
implicitely referred to when talking about the P(i)’s? What
are the states i’s? In what sense do we have only an imper-
fect or incomplete knowledge of the system? What are the
P(i)’s? Etc.

The beauty of statistical mechanics, or statistical thermo-
dynamics, over classical thermodynamics, is that, once we
have introduced the fundamental probabilistic description
of the system, reflecting our imperfect knowledge of which
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state it is in, it offers new and stunning explanations of what
is entropy and temperature, and their relations to energy
and pressure. We will discover little by little this beauty as
we progress in our study. The present chapter is devoted
to the probabilistic framework and to the introduction of
entropy. Temperature will be treated in chapter 2, pres-
sure in chapter 5. And we will study many other subjects
in statistical mechanics.

Hopefully the reader now understands why entropy is a
somewhat more obscure quantity from the point of view of
intuitive definition, than the other thermodynamics enti-
ties. It is because its definition has to do with both the
system and our state of knowledge of the system.

Let’s now do some examples.

Examples of entropy of simple systems

Let’s calculate some entropy for a couple of simple systems.
Our first system will be with coins, not a single coin but a
lot of coins. We consider n coins, figure 17.
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Figure 17: Collection of n coins, each showing heads or tails.

Each coin can be heads or tails. Suppose that we have no
idea what the state of the system is. We know nothing.
The probability distribution, in other words, is the same
for all states of this system consisting in n coins. We are
considering the case of absolute ignorance on our part.

What is the entropy associated to the system and us?? in
such a situation?

All the probabilities are equal. Under this circumstance, we
just get to use logarithm of the number of possible states.
How many states are there altogether? We have

N=2" (28)

There are two states for the first coin, two states for the
second coin, etc. That makes 2" possible states for the col-
lection of n coins.

What is the entropy, given that we know nothing? It is
the logarithm of the number of possible states, therefore
we have

22800n we will stop recalling that the entropy is related to us and
our knowledge of the system. It will be implicit, and we will drop the
"and us".
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S =nlog2 (29)

Here we see an example of the fact that entropy is kind of
additive over the system. It is proportional to the number
of degrees of freedom in this case.

And we also discover a unit of entropy. The unit of entropy
is called a bit. It is the abbreviation of binary digit. That
is what a bit is in information theory. It is the basic unit
of entropy for a system which has only two states, up or
down, heads or tails, open or closed, or whatever.

The entropy is proportional to the number of bits, or in this
case the number of coins times the logarithm of 2. So log 2
plays a fundamental role in information theory as the unit
of entropy.

It does not mean that in general that entropy is an integer
multiple of log2. We will see it in a second.

Above our state of knowledge was zilch. We knew nothing.
The value nlog 2 has an important interpretation. It is the
mazimum entropy.

With the same collection of n coins, let’s try another state
of knowledge. Suppose, at the other extremity of the range
of possible knowledge, that we know the state completely.
That is the case where the number of occupied states is
M = 1. The probability distribution now is shown in
figure 18.

The entropy is now S = 1log(1l), and that is equal to 0.
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So complete knowledge corresponds to zero entropy. And,
generally speaking, the more you know about the system,
the smaller the entropy is.

Fii)

i —t — e
L
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Figure 18: Case of perfect knowledge of the state of the system.

With our collection of n coins, lets consider another inter-
esting case. We know that all of them are heads, except one
that is tails. But we don’t know which one. And we have
no clue about where it could possibly be. So our imperfect
knowledge of the system corresponds to an even probability
distribution over all the states with one tails and (n — 1)
heads. How many are there? Well, clearly there are n such
states. Tails could be the first coin, or it could be the sec-
ond coin, etc. In other words, M = n. Therefore, according
to formula (27) or its simpler version (26), in this situation
the entropy is

S =logn (30)

Notice that it doesn’t have to be an integer multiple of
log 2. In general entropy is not an integer multiple of log 2.
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Nevertheless log 2 is a good unit of entropy. And it is called
the bit.

If the coins of our collection were objects with three possible
states?3, formula (28) would become N = 3". The maxi-
mum entropy would be nlog3. And the example where we
know that (n — 1) objects are in one state, and one of them
is in another state, and we don’t know which one, would
have to be entirely reworked.

Exercise 4: Suppose we have a collection of n
identical objects, each of them having three pos-
sible states. Build various cases of imperfect
knowledge of the state of the collection, and
compute each time the entropy.

Now computer scientists of course, for a variety of reasons,
like to think in terms of 2. First of all the mathematics of
it is nice. 2 is the smallest integer which is not 1.

Moreover, the physics that goes on inside your computer is
connected with electric switches which are either on or off.
So it is easy to have them manipulate information expressed
in bits?4.

28 An example is a die where we consider the three states w; =
{1 or 2}, wy = {3 or 4} and w3 = {5 or 6}.

2 Notice that we are talking about conventional computers, not
quantum computers which are working with gbits. A fundamental
practical discovery in electronics, which made the digital electronic
computers possible, was made by W. Eccles and F. W. Jordan, in
1918, when they figured out how to build a circuit capable of staying in
one of two states, after having received some electrical input, without
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Questions / answers session (2)

Q.: Is the logarithm in the definition of the entropy calcu-
lated in base 2 or in base e?

A.. Basically it doesn’t matter because there is just a sim-
ple multiplicative factor between the two.

Remember that we have much freedom in the choice of our
units. The speed of light can be expressed in meters, or
just taken to be 1. The same is true with units of length,
mass or time. We have the MKS units system, the Planck
units, etc. And the same is true with the bit.

The usual choice depends on who you are. If you are a
computer scientist, or an information theorist disciple of
Shannon?® then you like logarithm to the base 2. In this
case log2 is just 1. And the entropy, for instance in the
example leading to formula (29), it is just n. That is, the

mazimum entropy of a collection of n coins is n’S.

If you are a physicist, then you usually work in base e. But
the relationship is just a multiplicative factor. Logarithm
to the base e and logarithm to the base 2 are just related

by a numerical factor that is always the same?®7.

the help of any mechanical device.

#5Claude Shannon (1916 - 2001), American mathematician, elec-
trical engineer, and information theorist.

26Notice how this sentence can be puzzling or confusing if we don’t
know all that we have learned about entropy in this lesson: the prob-
abilistic framework, the possible states of the system, the fact that
entropy is a measure characterizing the system and our knowledge
of it, etc. That is the difference between our courses and articles in
scientific reviews for the general public.

"L ogarithm to the base e of 2 = 0.69314718056...
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In this book, when we write log we mean logarithm to the
base e. But very little would change if we used some other
base for the logarithms. For us physicists the maximum
entropy of the collection of n coins is aproximately 0.7 x n.
But anyway we just write it nlog 2.

Entropy in phase space

We are back in a continuous space of configurations of the
possible states of the system, and the phase space, which
combines positions and momenta, is continuous too. Let’s
see what is the definition of entropy in this case.

We begin by supposing that the probability distribution is
just uniform over some blob formed by the occupied states,

and zero outside the blob. In other words we are in a simple
situation, figure 19.

fu

Figure 19: Region, or blob, in the phase space formed by the oc-
cupied states.
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Then the definition of the entropy should be simple: we
take the logarithm of the number of states in the blob —
except that we are in the continuous case and the number
of occupied states is infinite.

So instead we just say it is the logarithm of the volume of
the probability distribution in phase space.

S =log Vps (31)

Vpgs is the volume in the phase space, which is high-dimen-
sional. Whatever the dimensionality of the phase space is,
the volume is measured in units of position times units of
momentum to the power of the number of coordinates in
the system. It is the volume of the region which is occupied
and has a nonzero probability distribution.

This is the closest analog that we can think of to log M
where M represented the number of equally probable states
of a discrete system. Here we didn’t have to weigh the states
with their probability or density of probability since we are
in a uniform case.

More generally, if the distribution of probability over the
blob in figure 19 is not uniform, we will introduce in for-
mula (31) the density of probability P(p,x) that the system
be at point (p,x) in the phase space.

Remember that, because we are in a continuous case, we

cannot deal with discrete probabilities and their ordinary
sum. The usual formula

Z P(i) =1 (32)

73



becomes now the integral of a probability density over the
phase space

/ P(p,x) dp de =1 (33)

The density P(p, z) is non zero only over the blob of occu-
pied states but that doesn’t make any difference in formula
(33).

Now, in the continuous case with non uniform density of
probability, the formula for the entropy is

S = —/ P(p,x) log P(p,x) dp dx (34)

In first approximation — we don’t mean first approxima-
tion numerically, but first conceptual approximation —, it is
measuring the logarithm of the volume of the probability
blob in phase space. That was the meaning of formula (31)
which we now extended to formula (34).

We have now defined, in the general continuous case, what
is entropy, which as we have seen depends on the probabil-
ity distribution, or density, over the blob of occupied states.

The next topics are temperature and the Boltzmann distri-
bution. Temperature will be treated in chapter 2, maximiz-
ing entropy in chapter 3, and the Boltzmann distribution
in chapter 4.

The Boltzmann distribution is the probability distribution
for thermal equilibrium. We haven’t quite defined thermal
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equilibrium yet but we will.

Let’s finish this substantial first chapter in statistical me-
chanics with a last questions / answers session.

Questions / answers session (3)

Q.: In the example with n coins, do you assume that the
tosses of each coin are independent?

A.: Well, I haven’t made such an assumption. I did not
describe the experiment, or sequence of experiments, which
produced the series of n elementary results, one for each
coin. Of course what you say could be the case, but the
point is that the assumption in not necessary as such, and
in fact would not always be true. T just described what we
know.

In the first example we know nothing, and the 2" possible
series of tosses are considered to be equally probable. Then
it is indeed equivalent to your assumption.

In the second case, we know that (n — 1) tosses are heads,
and one is tails, and we don’t know which one. Now your
assumption doesn’t hold.

We just say what we know, without specifying how we got
to our incomplete knowledge. And our incomplete knowl-
edge we translate into a probability distribution over occu-
pied states.
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To say, like in the first example, that all states are equally
probable is closely related to saying that there are no cor-
relations.

Let’s go back briefly to elementary probability theory. Con-
sider two random variables X and Y, on the state space €.
For instance the experiment £ could be the tosses of two
coins, coin 1 and coin 2. X would be the result of the
first toss, heads or tails. And Y would be the result of the
second toss. The space of states here is

Q:{ (HvH)a (HaT)v (TaH)’ (T7T>} (35)

The r.v.?8 X is a function from Q to the set {H, T}. It
consists in picking the first value in the pairs forming €.
X has a probability distribution, which can be calculated
from the fundamental probabilities for the four elements of
Q. They don’t have to be 1/4 each. They could be, for
instance, P(w1) = 1/2, P(wa) = 1/4, P(ws) = 1/4, and
P(ws) =0.

Then we can calculate the distribution of probability at-
tached to X:

PX=H} =
(36)
PIX =T} =

This is denoted Px, the probability distribution of the ran-
dom variable X. We can do the same for Y.

28 Abbreviation for random variable.
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We can also define and compute a joint probability dis-
tribution for (X,Y). It is denoted Pxy. For instance
PXY(HaH) = 1/27 PXY(HvT) = 1/47 ete.

X and Y are said to be independent if and only if their joint
distribution is the product of each of their distributions. In
other words, iff

Pxy = Px Py (37)

then, by definition, X and Y are independent.

Exercise 5: Show that, in the above example, X
and Y are not independent.

Another way to define, and to feel, independence is as fol-
lows: X and Y are independent if knowing the value of X,
after having performed &£, doesn’t give any information on
Y — technically, if the conditional distribution of Y, given a
specific value of X, is the same as its marginal distribution
(another name for Py).

Exercise 6: In the above example, what is the
conditional distribution of Y if we know that
X=T7

Finally correlation is a probabilistic concept close to de-
pendence. However uncorrelation is less stringent than in-
dependence. Strictly speaking correlation is defined only
for numerical random variables. We say that two random
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variables are uncorrelated iff the expectation of their prod-
uct is the product of their expectations®?, that is iff

E(XY) = E(X) E(Y) (38)

Correlation is defined as follows

E(XY)— E(X) E(Y)
ox Oy

Corr(XY) = (39)

where ox is the standard deviation of X, and oy is the
standard deviation of Y.

Why introduce correlation and noncorrelation if dependence
and independence is approximately the same concept? Be-
cause it is simpler to compute or check.

It raises a little problem however: the two concepts are
equivalent within the family of Gaussian random variables.
But they are not equivalent in general. It is possible to
construct counterexamples, where X and Y are not cor-
related but are not independent. These counterexamples
usually play no role in statistical mechanics, or even more
generally in physics, where, thanks to the central limit the-
orem, many random variables we deal with are Gaussian,
and when they are not, well, we go into the details.

Let’s go back to our series of n coins. In the case where at
first we know nothing, then knowing that coin 1 is heads,
doesn’t give any information on the others. They are in-
deed uncorrelated and independent.

29We use in formulas (38) and (39) the standard notations of prob-
abilists.
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Now let’s look at the case where what we know is: (n — 1)
are heads, and one is tails, but we don’t know which one.
If we look at the first coin and it is heads, does it give us
any information on the second one? Well, not much, but
actually a little bit. Instead of having probability 1/n of
being tails, it is now 1/(n — 1). So the coin tosses cannot
have been independent. And in fact if the first coin is tails,
then the second coin is surely heads, etc.

We gave a precise definition for correlation. For practical
purposes, with the above little caveat, what is important
to remember is this:

There is correlation between variables if measuring a first
variable gives us information on the others.

Or, said another way, there is correlation when the proba-
bility distribution for the other things is modified by mea-
suring the first.

In the complete ignorance case, there is no correlation. In
any other kind of initial incomplete knowledge about the
state of the system, in general there is some correlation.

Q.: In the system made of two parts A and B, in figure
14, once we measured one thing in A, which is a conserved
quantity in the overall system, that gives us information on
what it is in B, doesn’t it?

A.: Oh yes. That is certainly true for energy.
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Concerning entropy we have to be much more careful.

Incidentally, entropy is additive. It is the sum of the en-
tropies of all the individuals parts. If your system is made
of many identical parts, the overall entropy is proportional
to the number of parts.

Entropy is additive whenever there is no correlation. But
this fact is more subtle than it looks, because entropy is
not as simple a concept as energy. The concept of entropy
is related to our lack, or partial lack, of information. So we
will have to continue to develop our understanding of it.

In summary, uncorrelated systems have additive entropies.
But that is a theme that we will come back to.

Here is an interesting question, that we submit to the reader:

Exercise 7: We have a collection of n coins laid
out in a row. If we measure one of them and it
is up, then the probability for its neighbor on
the right is three quarters to be down. And it
is also the probability for its neighbor on the
left to be down. That is given. And that is all
we know.

Calculate the entropy of such a distribution.

There is correlation of course, because when we measure
one coin we immediately know something about its neigh-
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bors.

We encourage you to make up your own example like that,
and compute the entropy. You will learned something from it.

Q.: Was this idea of entropy of a series of coins invented in
1949 with information theory?

A.: Shannon rediscovered, in the context of information
theory that he was developping, the idea of entropy. And
he defined the entropy of a message made of a series of bits

— that is the same as our collection of n coins.

However the formula
S——/PlogP (40)

is due to Boltzmann.
What is the formula on his tomb? (figure 20)
S =klogW (41)
But he meant S = — [ Plog P :-)
He did write the formula S = — [PlogP. It is Boltz-

mann final formula for entropy. And the only difference
with Shannon entropy is that Shannon uses log 2.
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Figure 20: Boltzmann tombstone.

Now of course Shannon discovered this entirely by himself.
He didn’t know Boltzmann’s work. And he worked from an
entirely different direction, from information theory rather
than from thermodynamics.

But none of it would have surprised Boltzmann. Nor do 1
think Boltzmann definition would have surprised Shannon.
They are really the same thing.

If you put the minus sign in S = — [ Plog P, it is called
entropy.

If you don’t put the minus sign, then you write I = [ Plog P
and it is called information.

Q.: Is the incompleteness of our knowledge about the state
of the system, in statistical mechanics, related to the Heisen-
berg uncertainty principle in quantum mechanics?
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A.: No. These are two separate issues. S doesn’t have to
do with the quantum mechanical uncertainty which we en-
counter when measuring an observable, if the state of the
system is not one of the eigenstates of the observable.

In fact S has to do with the uncertainty implicit in mized
states, if you remember chapter 7 of volume 2 in the col-
lection The Theoretical Minimum, on quantum mechanics.
That chapter is devoted to entanglement. It explains in
particular the so-called density matrices, which do repre-
sent an incomplete knowledge like in statistical mechanics.
But it has nothing to do with Heisenberg’s principle, which
is related to observables which cannot be measured simulta-
neously because their Hermitian operators don’t commute.

In other words, S has nothing to do with the randomness
of measures implicit in pure states.

Q.: Why isn’t there the Boltzmann constant kp in the def-
inition of entropy in formula (40)?

A.: Well, remember that there are conversion factors be-
tween units, so that in the appropriate units

Boltzmann’s constant was a conversion factor from temper-
ature to energy. The natural unit for temperature is really
energy.
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But the energy of a molecule for example is approximately
equal to its temperature in certain units. Those units con-
tain a conversion factor kpg.

Appendix: customary mistakes in elementary proba-
bilities

When talking about probabilities, even educated people
may say wrong things like: since having two accidents is
very rare, and since I already had one, now the chances
that T have another one are much smaller.

On a more sophisticated level, the paradox of Monty
Hall, for instance, can befuddle even the best minds. Here
is how it goes: there are two people, one is the guesser who
must provide a best guess, the other is the operator of the
game. There are three closed doors, A, B and C, facing the
guesser. Behind one and only one is a prize. Step one: the
guesser must make a guess, for instance guess door A. Step
two: the operator, who knows where the prize is, doesn’t
open A, but selects among B and C a door where the prize
is not, and opens it. The guesser sees this new piece of
information. Step three: the guesser is invited to guess
again where the prize is.

Question: Should the guesser change his or her guess,
and now choose the other non opened door, or it doesn’t
matter? Answer: it does matter. The guesser should change
guess, and now choose the other non opened door. The
probability of winning will go from 1/3 to 2/3. Before read-
ing the solution, try to solve it by yourself.

One way to see it is to note that, if the guesser follows
this strategy, he or she will lose only when the prize was
behind the initial guess.
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