
Lesson 9 : The Ising model

Notes from Prof. Susskind video lectures publicly available
on YouTube
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Introduction

We began to study last time the Ising model. It is actually
a class of models sharing certain features. They began as
the following problem given by the physicist Wilhelm Lenz
to his doctoral student Ernst Ising in the early 1920’s at
the University of Hamburg : In a model of magnet made
of a linear sequence of little magnetic moments where only
neighbors are energetically coupled is there a phase transi-
tion in the magnetism of the system ?

Ising solved the one-dimensional problem correctly, and sho-
wed that it didn’t have a phase transition. On the basis of
that he believed and wrote in his thesis that the Ising mo-
del in any dimension does not have a phase transition. But
that was incorrect.

We are going to solve the Ising model in one dimension.
We are not going to solve the higher dimension Ising mo-
dels. They are hard maths and not within the scope of this
course. But we will use an approximation method that is
physically very intuitive. And we will see that in higher
dimensions, when their number is sufficiently high, there
is a phase transition. As we already said, there is a phase
transition, when we lower the temperature, as soon as the
number of dimensions is two, but that we won’t show.

Generally speaking, a phase transition means a sudden change
in the properties of the system as you vary a parameter, for
example the temperature. But let’s go slow, taking steps.
So let us first go back to the simple example – even simpler
than an Ising model – that we studied last time.

We studied a problem in which there was a collection of
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little magnets independent of each other, i.e. with no cou-
pling, plunged in a magnetic field H. Each magnet could
be up or down. And there was an elementary energy func-
tion E for each little magnet. The energy function differed
between up and down. Its expression was

E = µHσ (1)

where µ was the magnetic moment of the little magnet, H
was the magnitude of the external magnetic field, and σ was
+1 or −1 depending on whether the little magnet pointed
up or down.

We shall change a little bit the notation for this energy
function. First of all, since µ and H appear only through
their product, we denote it j. It is a standard notation for
what we will be doing later. And by convention we will put
a minus sign in front. Thus the elementary energy function
becomes

E = −jσ (2)

The minus sign doesn’t make any difference to the physics,
because it really is just a redefinition of what we mean as
up and down. If the original energy favored down, then, if
we change the sign, it favors up. But, other than that in-
terchange of up and down, there really is no difference.

Physical systems always tend to favor lower energy. In equa-
tion (2), when σ is negative, E is positive. And when σ is
positive, E is negative, that is lower. So the system favors
σ positive, or the little magnet pointing up.
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We studied a whole group of such little magnets, figure 1.
And we did some combinatorics. How many states are there,
given that there are n little magnets up, and m down ? It
is the customary number

(
N
n

)
, etc.

Figure 1 : System made of a collection of elementary magnetic
moments. The elements are uncoupled among each other. The
whole system is plunged in a magnetic field.

We did it that way to see carefully all the details. But we
could have done something much simpler.

We have already learned that we can always think of a
system as being a small system plus a heat bath.

Figure 2 : System viewed as a small system plus a heat bath. The
highlighted magnetic moment is the small system. The rest is the
heat bath.

So we focus on anyone of the elementary magnetic mo-
ments, for instance the one highlighted in figure 2. We as-
sume that it is in thermal equilibrium with its environment
– its environment being the rest of the magnets. Those ma-
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gnets of the environment are the heat bath. And they bring
the highlighted little magnet to equilibrium.

Now that the system of interest has become only one spin
which we focus on, we can write the partition function for
it. It is very simple. From equation (2) we get

Z =
∑
i

e+βjσi (3)

The plus sign in the exponent is because there is a minus
sign in equation (2), and, as we are familiar with, the ge-
neral form of the partition function is Z =

∑
e−βEi .

In equation (3), the sum is over all the possible configura-
tions for the little magnet. There are only two : σ equals
+1 or −1. So equation (3) simplifies into

Z = eβj + e−βj (4)

That is the partition function for just one spin.

When we calculated it, thinking of the whole system as
one system, do you remember the answer we got ? We got
equation (11) of chapter 8, which was

Z =
(
eβj + e−βj

)N
(5)

It is also the right-hand side of equation (4) to the N -th
power. This makes sense because, whenever we have inde-
pendent systems, the partition function of the big system
they form is simply the product of the partition functions
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of each system. And indeed, in the simplest model we stu-
died in the last chapter, eauch spin is independent of the
other spins. There is no coupling between spins. So we got
a factor eβj+e−βj for each spin. And the partition function
for the whole collection of spins is that factor to the N -th
power.

In other words, we can really short-circuit all that stuff
about combinatorics and focus on one spin at a time.

So let’s concentrate on the partition function of one spin,
that is equation (3). It can be rewritten

Z = 2 cosh(βj) (6)

When we did it last time, we got 2 cosh(βj) raised to the
power the number of spins.

When we take the logarithm of that – which is the interes-
ting thing – it simply becomes the sum.

For example the energy of the collection of spins, which is
just minus the derivative of the logarithm of their partition
function, is nothing but the sum of the energies of the in-
dividual spins.

Here we are concentrating on one spin at a time, one small
magnet at a time, and we calculate exactly the same energy
for each of them. So let’s calculate the energy :

E = − 1

Z

∂Z

∂β
(7)

which is the same as minus the derivative of the logarithm.
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The derivative of Z is twice the derivative of the cosh. That
is 2 sinh. But then we have to multiply by the derivative of
the argument βj with respect to β, which gives another j.
So we get

E = − 1

Z
2 sinh(βj) j

= −j tanh(βj)

(8)

That is the average energy of one of these little spins in
figure 2.

We can also ask : What is the probability that the spin is
up versus down ? Or what is the average ? σ is the variable
that can take the value +1 or −1. But what is the average
σ ?

Well, from equation (2), the energy in each configuration of
the spin is −jσ. Equation (8) is the average energy. Then
it is pretty clear that the average σ is the right-hand side
of equation (8) without the −j. When we write E, unless
specified otherwise 1, we talk about the average energy. For
the average σ, for maximum clarity, we can go back to our
heavier notation < σ >. So let’s summarize this

E = −j tanh(βj)

< σ > = tanh(βj)
(9)

We are going to need this. But let’s just draw a picture of
it. Figure 3 is a picture of the function hyperbolic tangent.

1. as in equation (2).
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Figure 3 : Function hyperbolic tangent.

This is hyperbolic tangent of x. In the expression of the
average of σ, x is βj. j is just a number. We could have
taken it to be equal to 1. So < σ > is hyperbolic tangent
of something proportional to the inverse temperature.

The slope of tanh(x) at x = 0 is 1. Then it has the two
asymptotic values −1 and +1, when x respectively goes to
−∞ and +∞. But, if we took j to be positive, which is
entirely conventional and up to us, we are only concerned
with the positive branch of its graph.

Now let’s look at what that says physically. When β is very
large, that means very low temperature, and since j is posi-
tive, then βj is very large and positive. We are way out on
the right in figure 3.

What it is telling us is that at very low temperature the
spin will point up with probability very close to 1. Indeed,
if the two possible values of σ are −1 and +1 and its ave-
rage is close to +1, this implies that the probability that it
take the value +1 must be almost 100%. And we built the
model, with equation (2), in such a way that this corres-
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ponds to the low energy state of the spin.

Let’s turn to very high temperatures. Then βj is very small.
We are near the origin. So < σ >= tanh(βj) is near zero
too, on the positive side. The magnetic spin is being constantly
kicked around with equal probabilility between its values
+1 and −1, and its average value is near 0. At very high
temperature it overcomes any bias it could have.

That was a very simple system.

One-dimensional Ising model

Now we want to come to the next least complicated big
magnet. It is the one-dimensional Ising model, which we
began to talk about at the end of last chapter.

Again, at each point along a one-dimensional array, there
is a little magnet with a σ, figure 4. It is either up or down,
corresponding to σ = +1 or −1.

Figure 4 : One-dimensional Ising model.

It looks like the preceding model, and indeed figure 4 is the
same figure as figure 1, but the new thing is that the energy
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now depends on the relationship between neighboring spins.

And there is no more external magnetic field. We could do
it with an external magnetic field too. And we will discuss
that at some point. But for the moment no external ma-
gnetic field.

Equation (8) was the average energy of one spin. But now
the energy of the system comes from the coupling of neigh-
boring spins. So we can no longer simply look at the energy
of each individual spins and add them up. Hence we look
directly at the energy of the whole shebang. It is given by

E =
∑
i

−j σi σi+1 (10)

As before, j is only a positive number. And the minus sign
means that the model favors neighboring spins pointing in
the same direction 2. In that case, we say that they are pa-
rallel, or aligned.

Thus the energy of one pair is lower when the two spins
are parallel, either both up or both down. And it is higher
when they are unaligned, i.e. when one is pointing up and

2. Notice that at macroscopic scale this is not what ordinary fer-
romagnets do. But in ordinary ferromagnets, at microscopic scale, the
spins do line up when the temperature and the energy go down. It is a
matter of very intricate detail whether the little elementary magnets
in the material prefer to be aligned or antialigned. Most of the times
they prefer to be antialigned, but in iron they prefer to be aligned.
We are not going to go into these details, which are not relevant to
this course. Remember that the "big magnets" made of "elementary
magnets" we study here are only mathematical models, remotely re-
lated to real magnets. We use them as simple examples displaying or
not phase transitions.
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the other down.

If all the spins are parallel, all the products σi σi+1 are equal
to +1. Then because of the −j in front, the total energy of
the system is minimum.

So what is the ground state of the system like ? It is when
all the spins point in the same direction. But which direc-
tion ? Answer : It doesn’t matter. There are two ground
states, with the same lowest energy.

Now what would happen if we changed the sign in front
of j, that is if we consider another model where the total
energy was

∑
j σi σi+1 ?

Is it really a different system ? No. It is really the same
system. All you have to do to see it is the same system is
to redefine every other spin by changing its sign. On every
other spin what you called up you now call down. You rede-
fine the variable. And then what you find out is the ground
state wants to have them all antiparallel. And again there
are two ground states.

So it is mathematically identical. In other words, the mi-
nus sign in front of j is really only a convention, justified
because it is simpler to think of grounds states with all the
spins aligned, up or down, rather than to think of the two
states where they perfectly alternate.

What we want to calculate is the usual thing : our friend
the partition function. What is it now ? It is

Z =
∑

eβj
∑
σiσi+1 (11)
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The small sign Σ in the exponent is the sum over i for one
configuration. And the big sign Σ, is the sum over all pos-
sible configurations.

Equation (11) looks terrible and very hard. But it is the
partition function we must work with.

Let us first present a question that we can ask. We would
like to know the answer to the following. Suppose we know
that the spin in one of the positions along the chain is up,
figure 5.

Figure 5 : We know that the spin at position i is up.

Then, knowing that, we can ask : What is the probability
that n links down the chain it is also up ? It is a conditio-
nal probability, given that the spin in figure 5 is up, that at
some other specified place it is also up ? It can be expressed
in terms of correlation 3.

We could also ask it in a different way, but it is the same
question really : What is the average of the product of spins

3. The correlation between the r.v. Xi and the r.v. Xj is by defi-
nition

corr(Xi, Xj) =
< XiXj > − < Xi >< Xj >

sd(Xi) sd(Xj)

where < ... > stands for mean, and sd(...) for standard deviation.
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at two different locations ? 4

Now you might think – and in this case you’d be right –
that a spin being up at some position i would have very
little effect on a spin at some position j far down the chain.

You might expect then that the average of the product
would be zero. Because whatever σi is, σj would have equal
probability to be up or down, independently of the value
of i. So their correlation would be zero.

But it might be wrong too. There might be an effect of just
having one spin up at i that would propagate all the way
through the system and tell you that there is a net bias
throughout the whole sample.

You could diagnose that by looking at the average value of
the spin at i times the value of the spin at j, where j is n
positions down from position i, that is j = i + n. In other
words, you would be looking at

< σi σi+n > (12)

If there existed this kind of memory where, if the spin at lo-
cation i was up, it biased the system all the way to infinity,

4. Note that, if for all i σi is equally probably +1 or −1, then all
the means are zero, and all the standard deviations are one. In that
case the above formula reduces to

corr(σi, σj) = < σiσj >

paying attention that here σi and σj are not the usual notation for
standard deviations, but are random variables.
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then expression (12) would not go to 0 with large distances.

If, on the other hand, that bias does go to 0, then σi being
up would not bias σi+n. And on the average the product
with a distant spin would be 0.

So this is an interesting diagnostic test of the effectiveness
of one spin being up on its neighbors, and how far that pro-
pagates down the chain.

Let’s see if we can guess what the answer is in our one-
dimensional model. Instead of a chain of little magnets,
think of it as a game of telephone, the game where you
whisper to your neighbor.

So we have a long chain of people and a message is going
to start at one end somewhere. It could be anywhere, for
instance at location i. And the message is going to be a
very simple message. The message is either "0", or "1".

We are not going to make fancy messages like the kids who
play this game – the kind of message like : "my dog had a
heart attack and therefore I’m off dog food for the rest of
my life". Just "0" or "1".

And people hear pretty well, as well as talk pretty well,
among this group. But the fidelity is not absolutely per-
fect. It is pretty good, yet there is a small probability that
the information be changed.

The question is : How far down the chain does the signal
propagate before it gets lost ? In other words, how far do
we have to go before it just becomes equally likely that the

14



person agrees with the starting point or disagrees.

The answer is no matter how good the fidelity, as long as
it is not absolutely perfect, you lose memory sufficiently far
down. If there is a probability for an error of 1% in each
time, then the probability for no error is 99%. But, when
we go two steps down the chain, it is 99% of 99%. And that
is 98.01%.

Each time it goes down by a factor of 0.99. And if you go
far enough down the chain that product will get arbitrarily
small. The probability a hundred units down the chain that
the signal is remembered with good fidelity is only 36.6%.
And down 10 000 units it is 2.3 x 10−42 %, that is essentially
zero. That is basically no memory.

Exercise 1 : Given that the signal started "1",
show that 10 000 steps down the chain the pro-
bability that it is "1" is 50%, and the probability
that it is "0" is 50%.

It is the same thing in our model. There is no signal to be
transmitted, but there is an energy bias. If the spin σi is
up, the system prefering lower energy, the spin σi+1 will
have a bias to be up too. At zero temperature, it is like the
perfectly accurate signal, infinite fidelity. That is like the
situation where there is no loss of information whatsoever.
If one spin is up, then everybody just lines up. It is perfect
positive correlation.

But if there is the slightest systematic bias, or infidelity,
the correlation far down will go to zero. That is what will
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happen in the Ising model.

So let’s see if we can calculate E in equation (10). There is
a marvellous trick. Instead of focussing on the spins, it is
to focus on the links between the spins.

We are going to imagine for the moment that the chain is
finite. Then we will let it get very big. The first spin at the
left extremity can be up or down. Let’s start by assuming
it is up. And later on we will add back the configuration
where it is down. Thus we are going to write the partition
function as the sum of two terms. In the first term, the first
spin is up. In the second term, the first spin is down. But
let’s concentrate on the term where the first spin σ1 is up
to begin with, figure 6.

Figure 6 : Collection of spins, and their links. We know that the
first spin is up.

Now when considering the second spin, we can either work
with the value of the spin itself or we can work with the
product σ1σ2. Since σ1 is known to be up, σ1σ2 will tell
us everything we want to know about σ2. For any i, let’s
define

µi = σi σi+1 (13)

Thus µ1 is a variable that has to do with the relationship
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between the first spin and the second spin. But if we know
it, then you know what the second spin is.

What about the next one ? µ2 = σ2 σ3. Instead of thinking
of the spins, think of the links. The links have two possi-
bilities : either parallel or antiparallel. Knowing the links
would tell us nothing about any individual spin, unless we
knew the value of the first spin. But if we know σ1 is up and
we know µ1, then we know σ2. Indeed, if σ1 = +1, then,
from µ1 = σ1σ2, we deduce that

σ2 = µ1 (14)

Now supposing we know µ1 and also µ2, then we know what
σ3 is. What is it ? To calculate it, we can start from

µ2 = σ2σ3

= µ1σ3
(15)

Multiply both sides by µ1

µ1µ2 = µ21σ3 (16)

But whatever µ1 is, its square is 1. So we get

σ3 = µ1µ2 (17)

The general formula is left for reader to establish. It is the
following exercise.
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Exercise 2 : Given that σ1 = +1, show that for
all n

σn = µ1µ2 ... µn−1 (18)

In other words, knowing the first spin, if we know the µ’s
for all of the links in between, we know all the spins. And
there is no redundancy, there is no double counting. As long
as we know that the first spin is up, it is equally good to
know the µ’s, which live so to speak on the bonds between
the spins, as it is to know the spins themselves.

That is very useful. Why ? Because the energy is just made
up out of these bond variables. From equation (10), we can
write

E = −j
∑
i

σi σi+1 = −j
∑
i

µi (19)

We are not even multiplying anything anymore. With −j
in front, the energy E of a particular configuration is just
the sum of the values of the individual bonds.

That is a powerful new expression, because the individual
bonds are all independent, and that will come in handy
when we calculate the partition function of the system.

What are the possible values of the bonds ? It is +1 or −1.
It is +1 if the two spins they link are aligned, and −1 if the
spins are antialigned.

Going back to the partition function Z, from equation (11)
we can write
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Z = 2
∑

eβj
∑

i µi (20)

The factor 2 in front is because our above reasoning was
only in the case σ1 was up. But, as said, we must add the
case when σ1 is down. The values of the two terms are the
same, whence the factor 2. But, as we know, a multiplica-
tive factor is no big deal in a partition function.

As before, in equation (20), the sum in the exponent is over
the bonds, and the big sum is over all the possible configura-
tions. Notice there is one fewer bond than spins, although,
if the number of elementary magnets is very large, it doesn’t
matter much.

Equation (20) resembles equation (3) we obtained in the
very simple model studied at the outset, before the Ising
model. The differences are that the σi which appeared in
equation (3) is replaced by

∑
i µi in equation (20). This∑

i µi is for one configuration. Then there is the big sum
of exp(βj

∑
i µi) over all the possible configurations, the

calculation of which appears daunting. And there is the
factor 2.

True, equation (20) looks much messier than equation (3)
or even equation (3) to the power N , that is equation (5),
but the important point we are going to use is that the µ’s
are independent of each other.

Remember that we established equation (5) following two
methods : first, in the previous chapter, we looked at all
the configurations of the N spins ; secondly we looked only
at one spin, and wrote that the partition function for the
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whole collection was that of one spin raised to the N -th
power. We could do that because the spins in that simple
model were all independent.

Now in the Ising model, where the coupled spins were astu-
tely replaced by the independent bonds, we use the second
method. That allows us to avoid working with the messy
equation (20), and reach directly the simple answer. The
partition function for the collection of bonds, is that of one
bond raised to the (N−1)-st power, because there are N−1
bonds. And we have a factor 2 in front. So at one fell swoop
we get

Z = 2 [ 2 cosh(βj) ]N−1 (21)

We have reduced our problem to exactly the same problem
as before. The only difference is the physical meaning of the
degrees of freedom in the collection of spins or bonds that
is a little bit different.

Now what is the average ? Let’s not ask about the average
of one spin, but about the average of one bond, that is the
average of the product of two neighboring spins.

We can either write it as < µi >, for any given µi, or as
< σi σi+1 >, for any given pair of adjacent spins. In any
case, it is

< µi > = < σi σi+1 > = tanh(βj) (22)

It is not zero. And if we take j to be positive, it is positive.
The fact that the average is non 0 and positive tells us that
there is a net – in the sense of average – tendency for the
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(i + 1)-st spin to line up in the same direction as the i-th
spin.

That is the same thing as saying that there is a bias for µi
to be positive. If the first spin is found up, the next one has
a better than even chance of also being found up. And what
is the better than even chance ? It is tanh(βj)/2 above 1/2.

Exercise 3 : Using the fact that

< σ1 σ2 > = tanh(βj)

prove that

Prob { σ2 = +1 | σ1 = +1 } =
1

2
+

tanh(βj)

2

The left hand side is the usual notation for the
conditional probability that σ2 = +1, given that
σ1 = +1.

This tells us that there is a correlation between neighbors 5.

5. Remember, from elementary probability theory, that two
random variables are independent if and only if the unconditional
distribution of one of them – also called it marginal distribution – is
the same as its conditional distribution given that we know the value
of the other random variable.

The reader may also remember the nagging little fact that uncorre-
lation and independence are not exactly equivalent concepts. They
are equivalent within the family of Gaussian r.v.’s. But they are not
quite equivalent in general. It is possible to build two random variables
which are dependent but whose correlation coefficient is 0. Counte-
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But let’s now go far down the line. And let’s ask exactly
the question which we asked when we started : What is the
correlation between the i-th spin and one n units down the
chain ?

How are we going to get at that ? The answer is very simple.
We want to calculate

< σi σi+n > (23)

We can write this as follows

< σi σi+1 σi+1 σi+2 σi+2 ... σi+n−1 σi+n−1 σi+n > (24)

Why is that ? Because inside we multiplied by σ2i+1, σ
2
i+2,

etc. But these squared random variables are always equal
to 1, so we didn’t change anything.

The nice thing is that expression (24) can be rewritten 6

< µi µi+1 µi+2 ... µi+n−1 > (25)

Now again we shall use the fact all of the µ’s are inde-
pendent of each other. The energy is the sum of the ener-
gies. The problem completely factorizes. Expression (25) is
also

< µi > < µi+1 > < µi+2 > ... < µi+n−1 > (26)

rexample : take X = Uniform(−1,+1), and Y = X2. Then you can
check that Corr(X,Y ) = 0, but they are obvioulsy not independent.
However such counterexamples don’t concern us here.

6. Notice that we could also have used expression (23) and equa-
tion (18) to establish expression (25).
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And each of these averages is tanh(βj). So we have finally
found that

< σi σi+n > = tanh(βj)n (27)

n being the number of steps between i and (i + n). This
formula is expressing exactly the idea of the game of tele-
phone. The coefficient tanh(βj), with is akin to fidelity, is
always positive and less than or equal to 1.

When tanh(βj) = 1, β is infinite, that is zero temperature,
perfect fidelity. Then, no matter how far down the line you
go, < σi σi+n > in equation (27) will be one. This is the
statement that at zero temperature if you know that µi is
lined up, every one of them is lined up. There are only two
possibilities, everybody parallel upward or everybody pa-
rallel downward. And in either case the product (26) is one.

But if there is any loss of fidelity at all, which means in this
case the temperature is not absolutely 0, then tanh(βj) < 1.
And each time we go another step we multiply by a factor
of tanh(βj). It like what we saw when fidelity in the tele-
phone game was not perfect but only say 99% at each step.
After two steps it was only about 98%, etc.

So, no matter how close < µ > is to 1, as long as it is
less than 1, when we go sufficiently far down the chain the
correlation < σi σi+n >, as a function of n, will become
arbitrarily small. There would be no or negligible memory.
Indeed tanh(βj)n is an exponential function of n. And when
the temperature is above zero, it is a number less than 1
raised to the n-th power. So the correlation falls exponen-
tially fast with n.
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Incidentally, the big trick of focussing on the bonds instead
of the spins in figure 6, thereby replacing messy coupled
random variables – the spins – by nice independent ones –
the bonds –, and transforming the problem of finding the
partition function, the energy, etc. into a tractable one, is
a pattern in physics. It is called a duality.

In modern physics this could be thought of as the first dua-
lity, that is equivalence of different systems. We found an
equivalence between a theory of spins which are connec-
ted to nearest neighbors, with another theory of just spins
which are uncoupled, because we saw that the bonds in fi-
gure 6 behave like the spins of the very first problem where
they were independent of each other, just plunged in a ma-
gnetic field.

This involved a clever change of variables which basically
interchanged sites to bonds. Here is, for instance, a picture
of sites and bonds in a 3D lattice, figure 7.

Figure 7 : 3D cubic lattice, with sites and bonds.
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The sites and bonds are also sometimes called vertices and
edges.

So we met the first example of a duality between different
statistical mechanical systems. It is not always an inter-
change between edges and vertices, but in this case it is.

We found out some things about the one-dimensional Ising
model. We found out that it is never magnetized, except at
zero temperature. Magnetized can translate into the state-
ment that there is this long-range memory : if one spin is
up all the others will be biased up till very far away. That
is called magnetization.

It is equivalent, in fact, to the statement that if we put a
tiny magnetic field on one site of the system to bias it, it
will cause everything to line up. We will see that with a
little calculation in a moment.

In summary the one-dimensional Ising model is a boring
system. It has no phase transition. It does exactly what we
might have expected it to do. Correlations fade as we go
down the line.

And the reason is simple. It is the same reason as in the
game of telephone. There is a probability that we make an
error when we go from location i to location i + 1. Once
we make an error, we start over again with a new message.
And we wait until we make another error. Then we start
over again, and so forth and so on. And that is the way it
goes.

Nevertheless there will be some clumping, a tendency to dis-
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play clumps of spins in the same directions. It is just like in
the game of telephone where there will be long stretches of
agreement. And then statistically, on the average, every so
often, there is a switch. But then a long chain of agreement
again. Then a switch, etc.

Of course high temperatures are like the fidelity being very
bad. The clumps or stretches are short then. Infinite tem-
perature is like the situation where you just can’t hear your
neighbor. You get no information. He or she whispers in a
din, and on top of that there is a dense fog, so that you
can’t even read his or her lips. You wind up, whatever your
neighbor says, making a random guess. That is the sta-
tement that there is not even correlation between nearest
neighbors. T = +∞, β = 0, tanh(βj) = 0, the probability
calculated in exercise 3 is 1/2, and Corr(σi, σi+1) = 0.

How do we make the system more interesting ? What is
wrong in a linear chain is the dimension is too low. Once
we make a mistake our neighbor doesn’t have any support
to know what the right answer is.

What about higher dimensions ?

Ising model in two or more dimensions

Now, instead of playing telephone, let’s play a different
game. Players are sitting in a room, for example a lec-
ture hall, with rows after rows of seats covering the entire
floor. So there are also columns of seats. Each player has
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four neighbors. They can be seen as the vertices of a two-
dimensional square lattice.

Kevin over here starts a message. He sends it to the four
fellows respectively to his right, his left, in front of him,
and behind him. Then they each send the message to all
their neighbors. In particular they will send their message
to some new people who will receive them from several dif-
ferent directions, for example Seth in figure 8.

Figure 8 : Message transmission in a 2D square lattice. Players
receive messages from several different directions.

As the message spreads throughout the lattice, new people
will be getting messages from different sides. They will have
to make their judgments about what is the right message,
and therefore in turn what to transmit.

If after having sent his message a player becomes somehow
new again and can again receive messages and transmit
them, then as the game unfolds everybody will get basi-
cally four messages from all the people around them.
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We are a player, and suppose three of those messages ar-
riving at us say one thing, but one of them says another
thing, what do we do ? We will do what computer scientists
call error correction. It just means we will take the majority
vote.

This system works much better. And in fact, if the fidelity is
reasonably good, the initial message will spread throughout
and off to infinity.

The same thing happens in the two-dimensional Ising mo-
del. The bias of anyone spin will bias the rest of the sample.
Said another way, putting a little magnetic field on one spin
in two-dimensions will bias the whole sample.

This is not completely obvious. Surprisingly, there is no easy
solution. One way to prove it is going through the analysis
of the two-dimensional Ising model following what Kramers
and Wannier did.

That Ising got it wrong in two-dimensions is forgivable. But
he thought and stated that in every dimension, if the fidelity
was not 100%, then the message would always eventually
get lost, as in one dimension. That is also wrong. And in
high dimensions, it is not too hard to disprove.

If we think about it for a minute, we realize that it is very
dimension dependent. Why is that ? In one dimension each
person has only two neighbors 7. That is not very many.

7. We studied a model where the information propagated in only
one direction. We could have studied another one where information
propagated in both directions. But there would be no way to use the
rule of majority vote when the messages received differed.
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The player at site i doesn’t have much of a support system.
He gets the message really only from one direction.

How many neighbors does a two-dimensional system have ?
Four if it is a square lattice like in figure 8. So that means
we will be getting messages from four people. We have a
pretty good chance, using the majority rule, of registering
the right answer even if the fidelity is not so good.

If we use some weighing procedure such as taking the ma-
jority, we do pretty well. We do much much better than if
we were just getting the message from one person.

How about in three dimensions ? We have six neighbors,
see figure 7. How about 10 000 dimensions. Whatever it is,
20 000 neighbors if the lattice is square.

I used to have this friend Art Harris. Art Harris was the
first black Mr America. Anything you asked him, he would
say : A hundred men can’t be wrong. I don’t know what he
had in mind, but in high dimensions it is true a hundred
neighbors won’t be wrong very often. Fluctuations among
large numbers of variables tend to be very small in compa-
rison with the net average.

By that, we mean precisely the following. Consider n Ber-
noulli trials 8, that is n random variables Xi, independent
of each other and each one taking value +1 with probabi-
lity p, and −1 with probability (1 − p). Then the average
of each of them is 2p− 1, and so is the average of

∑
iXi/n.

8. named after Jacob Bernoulli (1654 -1705), Swiss mathematician,
member of the the famous Bernoulli family of mathematicians and
mathematical physicists.
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But the fluctuation of the average of the Xi’s is much smal-
ler than that of each Xi. By fluctuation we mean the stan-
dard deviation. The variance of Xi is 4p(1 − p). So the
standard deviation of Xi is 2

√
p(1− p). Then, because the

Xi are independent with the same distribution, the variance
of the sum of the Xi’s is the sum of the variances, that is

Var

(∑
i

Xi

)
= 4np(1− p) (28)

And if we divide the sum by n, the variance will be divided
by n2.

Var

(
1

n

∑
i

Xi

)
=

4p(1− p)
n

(29)

Finally, taking the square root, we reach

Std dev

(
1

n

∑
i

Xi

)
=

1√
n

Std dev(Xi) (30)

If n = 100, we see that the fluctuation of the average of
the Xi is ten times smaller than the fluctuation of each Xi.
This is in fact also a direct consequence of the law of large
numbers, which is proved along similar lines, using Cheby-
shev inequality 9.

9. If we have a positive r.v. Y with mean µ, we prove first that, for
any t > 0, Pr{ Y ≥ t } ≤ µ/t. Then, if X is a random variable, which
can be positive or negative, with mean µ and variance σ2, Chebyshev
inequality says that, for any t > 0,

Pr{ |X − µ| ≥ t } ≤ σ2

t2
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It is the familiar and intuitive result that the fluctuation
of the average of n measures is smaller than that of each
measure, and goes to zero like 1/

√
n.

If p is higher than 1/2, then EXi = 2p− 1 is positive, and
standard deviation of Xi = 2

√
p(1− p). The expectation

of the average of the Xi is also 2p− 1. But, as we saw, the
standard deviation of

∑
iXi/n = 2

√
p(1− p)/n. So it is

highly likely that the random average will be positive and
therefore the message we will register in a transmission,
which we select to be either +1 or −1, will be +1.

So, the higher the dimensionality, the better our shot at
being able to propagate the information of one spin throu-
ghout the entire lattice, because then n will be high in the
above calculations.

That leads us to ask the question : What would the Ising
model be like in very high dimensions ? We consider some
very large number of dimensions, ten thousand or whatever
it is. Then what can we say about the propagation of the
information ? We will observe a phenomenon.

You might even ask : Above what value is the number n of
dimensions considered to be large ? It turns out 2 is high en-
ough. For the study of the propagation of the information,
using the majority rule, which is reinforced by the number
of dimensions, it turns out that 2 behaves like 10 000.

As soon as the number of dimensions is more than one,
there is a phase transition. Only the one-dimensional Ising
model does not have a transition. When n ≥ 2, if the pro-
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bability p, i.e. the fidelity, is high enough, the information
is transmitted throughout the lattice. That is not obvious,
and could not have been predicted easily. It also turns out
that 3 is already very large in this game. That can be calcu-
lated, or checked numerically. But anyway n = 2 is enough.

As p goes down from 1 to 1/2, at some point there is a
phase transition from order to disorder. We won’t prove it
for n = 3, let alone for n = 2, because it is hard. But for
sufficiently high dimensions there is an awfully good argu-
ment to say that there is a transition.

At high temperatures everything is random. As we lower
the temperature, everybody wants to line up. And that
tendency to lineup propagates throughout the system to
infinity.

There are many possible tricks to do this thing. We are
going to use something called mean field approximation.
Instead of n, the number of dimensions will be denoted d.
Each site is surrounded by how many neighbors ? In 3D the
answer is 6, figure 9.

Figure 9 : Neighbors of a site when d = 3.
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Each site is surrounded by 2d neighbors. Imagine that d is
very large. And because d is very large, imagine that all
of the neighbors define a field whose fluctuation is much
smaller than its average value.

As we spelled out in the case of the Bernoulli trials, if we
have a large number of variables, and they are biased, so
that their biasses 10 add up to something of order the num-
ber of variables, then the fluctuation of the sum will typi-
cally be much smaller than its bias, because the fluctuation
will grow like

√
n compared to the bias which will grow

like n. So that is what we are going to do.

Let’s focus on the spin in the center of figure 9. For all the
other spins surrounding it, we are going to make an ap-
proximation about them.

Let’s write the energy of the spin in the center. It is

E = −jσ
∑

neighbors

σneighbor (31)

where σ is the value of the spin at the center. This formula is
the generalization of −jσiσi+1 which appeared in equation
(10). But be careful, the sum in equation (31) still concerns
only one spin, whereas the sum in equation (10) came from
the fact that we were looking at the whole sample of spins.

Now let’s suppose that there is a bit of bias and that the
average of the spins is not 0. Of course we are going to check

10. The bias of a random variable here means the departure of its
expectation from 0. We use the word bias to emphasize that, unlike
when it has mean 0, the variable carries information.
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that. We are going to write a formula, that would allow the
spin to be 0 too. But let’s suppose throughout the lattice
that the spin has an average denoted σ.

σ is a notation, read sigma bar, meaning the average spin
in the whole sample. It is lighter than < σ >, but is the
same thing.

We don’t know what the value of σ is. It might be 0, it might
be positive, it might be negative. We don’t know. But, in
equation (31), we are going to replace the sum over neigh-
bors by simply 2d times this average. That is a pretty good
approximation if the number of neighbors is large. And the
larger the number of neighbors, the better the approxima-
tion. When we have large numbers, as a typical rule 11 we
are allowed to average and the fluctuations are small.

So equation (31 becomes

E = −2djσσ (32)

That is the energy of one particular spin sitting in the bath,
or in the field, of all the others. This is called mean field
approximation. Mean is not in the sense of nasty, but in the
sense of average. And the field now is the field experienced
by one spin in the field of all the others.

We can do the partition function of that one spin at the
center of figure 9. In fact we don’t even need to do the

11. Of course this depends on what we do with the average. And, in
a rigorous proof, it must be checked that it can be done. Here we are
following a partly heuristic argument to show that in high dimension,
there is a phase transition.
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calculation. We know how to do the partition function. It
is exactly the same calculation we did starting from equa-
tion (2), except wherever we wrote j, we instead write 2djσ.

So we can immediately write down the average value of the
spin at the center of figure 9. Let’s denote it σ, read sigma
double bar. This average spin is going to be

σ = tanh(2dβjσ) (33)

The spin at the center of figure 9 is moving in the back-
ground of all the others. And the others all constitute a
constant field that we just call σ.

This mean field approximation is also sometimes called self-
consistent field approximation. Why self-consistent – hope-
fully self-consistent ? Because the spin at the center of fi-
gure 9 is no different than all the others. It is just one of
the many spins in the system. And if each of the neighbors
in figure 9 has an average equal to σ, the physical intuition
would require that the one at the center also should have
the same average. That has got to do with translation in-
variance. Everyone is really the same as everyone else in a
big sample.

So the self-consistent field theory implies that σ is the same
as σ. That gives us an equation for σ :

σ = tanh(2dβjσ) (33)

2dβj is simply a constant factor, inside tanh, in front of σ.
And remember that β is the inverse of the temperature.
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Equation (31) is an implicit equation for σ. We want to
solve it. How do we get an intuition about what it says ?

Question : Regarding the factor 2d, is it only the number
of nearest neighbors, or could it include next nearest neigh-
bors ?

Answer : We dont’ look at next nearest neighbors. 2d is
the number of nearest neighbors in d dimensions. In one
dimension it is two. It two dimensions it is four, see figure
8. In three dimensions it is six, see figures 7 or 9. In four
dimensions it would be eight. Etc.

Next nearest neighbors would go in the same direction as
going in higher dimension. That would just change the fac-
tor inside tanh in equation (31).

We picked a particular model and study it as a function of
dimension. We could study it as a function of the nature of
second nearest neighbor couplings, third nearest neighbor
couplings. We can do all these things.

The model with a high number of dimensions we are stu-
dying is just one way of making a spin have a lot of nearest
neighbors. And then this enables us to astutely use mean
field approximation.

The physics of high dimensions is not something we realize
in the laboratory 12. But we do this procedure all time : We

12. Notice though that the experiments which we can do in the la-
boratory – as opposed to the gedanken experiments Einstein was fond
of – are always studied, analyzed, interpreted with models of a mathe-
matical nature. Sometimes these models involve high or even infinite
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want to prove something about a system. It is a little too
hard. We can’t get our hands on it. But we can go, mixing
mathematical and physical reasoning, to some limit where
it becomes much easier. And we prove it in the limit.

We haven’t proved it for the physical case of interest but
at least we can prove that somewhere between, in our case,
one dimension and a hundred thousand dimensions, a cer-
tain new kind of behavior happens that wasn’t present in
one dimension – namely the phase transition that we are
going to show.

Once we see how that works, we can then ask where does
the change happen ? And in our case it happens between
dimension one and dimension two.

So when d is large, we get a nice simple example where we
can view what happens physically without having to solve
a difficult mathematical problem.

So let’s try to solve equation (33).

The first thing to do is to change variables. To change va-
riables often seems to obscure a problem, because we go
from a variable we have an intuition for to one which seems

dimensions. Nature provides only raw facts, not elaborate models or
interpretations. And even those raw facts are not devoid of puzzles.
Is it really possible to perceive without any implicit models ? Can
there be raw facts or phenomena we cannot perceive ? It is temp-
ting to answer no. But then we are part of the experiments in some
incomfortable way. These considerations may eventually lead to the
next scientific paradigm which would look differently at Man looking
at Nature, and would solve the riddles of the hypothetical multiverses
and such things. See the appendix on the anthropic principle for more.
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artificial and we can’t interpret as easily. But there is a
good reason. Equation (33) involves hyperbolic tangent of
a complicated thing. We don’t want a complicated thing in
tanh. That is a nuisance.

So we are going to make 2dβjσ our new variable :

y = 2dβjσ (34)

Equation (33) becomes

y

2dβj
= tanh y (35)

Now to solve this equation, we are just going to graph both
sides and see where they intersect. That is the crudest way
to solve an equation : to draw a graph of both sides and see
where they intersect.

On the left-hand side, instead of β in the denominator, let’s
put the temperature T in the numerator because it is a more
intuitive quantity to follow. Equation (35) becomes

Ty

2dj
= tanh y (36)

So we shall draw on the same graph tanh y and the simple
linear function Ty/2dj for various values of the coefficient
T/2dj.

We begin with the first case when the temperature is high.
Then the straight line Ty/2dj intersects tanh y only at the
origin, figure 10.
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Of course, since d is a large number, T must be large too.
How high the temperature must be depends on d. But
eventually for a high enough temperature the slope of the
straight line is more than 1, i.e. more than the slope of the
hyperbolic tangent of y at 0.

Figure 10 : tanh y and Ty/2dj when T is high.

So we see that for high temperature, the only possible ans-
wer to the self-consistent field theory is that y = 0. But
what is y ? y is proportional to the average of σ.

Thus we learned the first result that at high enough tem-
perature, the average of σ must be zero, as expected. That
is not too surprising.

Now let’s start lowering the temperature. As T goes down,
the slope of the straight line decreases. We eventually reach
a temperature where the slope is equal to 1. We see that
when

T = 2dj (37)

the straight line becomes tangent to the hyperbolic tangent.
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Something happens at that temperature. When we go beyond
that, there is some new solution to equation (36), or equi-
valently to equation (33), figure 11.

Figure 11 : tanh y and Ty/2dj when T < 2dj.

Just to be clear let’s assume j is positive, so we are only
interested in the right part of the graph.

So now, beside the solution y = 0, there is another solution
with y strictly positive, therefore where σ is not zero.

In other words the system can have an overall average of
spin pointing all in the same direction. That is the pheno-
menon of magnetization.

What happens when T crosses 2dj is called a phase transi-
tion. In terms of T , below that point there is an average ma-
gnetization, an average field that just permeates the whole
system forever.

Now you might say : Hold on, how do I know that the right
physical solution wasn’t the one at the origin ? Indeed for
any value of the constants, the straight line does also inter-
sect the tanh curve at the origin. So how do we know which
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one is right ?

We are going to do a little calculation. We shall add to this
problem a teeny little magnetic field that biases the system.
And we shall discover that the teeniest little magnetic field
will tell us that we should be on the right branch in figure
11, and not at the origin.

But we can see it another way. Let’s go to zero tempera-
ture. Zero temperature is way out to the right in figure 11.
And we know what to expect at zero temperature. We ex-
pect alignement. Everybody must be locked into a parallel
configuration.

Then, as we raise the temperature, we slide along the right
branch of tanh leftward toward the origin. Eventually when
the increasing T reaches 2dj, we hit the origin, that is the
transition point. Beyond that temperature, the straight line
is steeper than 1. Thence, there is only one solution, y = 0,
or equivalently σ = 0.

That is the nature of a phase transition, which we’ll talk
about a little more.

We have been working with d high so that we could apply
the mean field approximation. We haven’t shown that there
is a phase transition even for low d as long as it is greater
than or equal to 2.

We have already seen that there is no phase transition in
one dimension, because as soon as < µ > is less that one –
see equation (22) and infra –, the correlation between dis-
tant spins falls off to zero, so they cannot obey like an infi-
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nite army of soldiers. But let’s see, with a different explana-
tion, why a phase transition can’t happen in one dimension.

At absolute zero temperature everybody wants to align,
figure 12.

Figure 12 : One dimensional collection of small magnets at zero
temperature.

Now let’s imagine writing the partition function as a sum
over all the configurations. How can we enumerate the confi-
gurations starting with the configuration in figure 12 ? We
can enumerate it by the number of spins that are flipped
relative to this initial configuration.

So writing the partition function, we would start with e to
the minus beta times the energy of the initial configuration.
We are now familiar with this.

Z =
∑
i

e−βEi (38)

Starting from zero, figure 12 is the dominant configuration.
Then we raise the temperature a little tiny bit. Some new
configuration start to become important too. For example
we flip one spin in figure 12.

To understand what will happen and not happen, let’s
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also do the same thing in two dimensions. We start with
a two dimensional square lattice at zero temperature. All
the spins are parallel, for instance all up, marked with a
plus sign, figure 13.

Figure 13 : Two dimensional square lattice of small magnets at
zero temperature.

This is one of the two lowest energy states. Remember that
in the Ising models the energy is stored in the bonds linking
the sites. And two sites pointing in the same direction cor-
respond to a bond with low energy, see equation (10) and
the comments thereafter. So here we start with everybody
pointing in the same direction.

Now let’s ask what is the next state, the next higher energy ?
What happens if we flip one spin ? How much energy do we
put ? How many bonds have we broken ? Clearly if, in figure
13, we flip only one spin, we break four bonds 13.

13. Imagine of course the spin among all the spins, not along a
border of the figure. And breaking a bond means to make it have two
antialigned spins. In this case the energy of the bond becomes high.
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And how many places are there where we can do that ? Ba-
sically on each site. The number of places where you can
do that is the total number of sites. So that means there
is a number of configurations that we can add in with four
extra units of energy.

Now supposing we want to flip two spins, the next configu-
ration. If the spins are next to each other, as in figure 14,
then we break six bonds.

Figure 14 : Two dimensional square lattice, two adjacent spins
flipped down, and the six broken bonds.

Notice, in that case, that the bond between the two flipped
spins is parallel again, i.e. not broken. Each broken bond
costs a certain amount of energy. So we have increased the
energy by six broken bonds.

What would have happened if we would have put the se-
cond minus sign away from the first one ? Then we get eight
broken bonds.

So each time we increase the number of flipped spins, it
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costs us something. For each new configuration, a further
Boltzmann factor, e to the minus beta times the energy, is
added in the partition function. Each time we flip another
spin, the energy goes up.

Now let’s compare that with the one-dimensional case. From
the configuration shown in figure 12, how much energy does
it cost to flip one spin ? How many bonds get broken ? Two.

How about to flip two spins ? If they are adjacent, it is still
just two broken bonds.

How about three spins ? If they are adjacent, it is still two.
You can flip any number of them and it still only costs two
units of energy. That means there is a lot of configurations
all with the same energy.

In the two-dimensional case, the number of configurations
with four extra units of energy would be just proportional
to the number of sites.

In the one-dimensional case, the number of configurations
with two extra units of energy is proportional to the square
of the number of sites, because you can pick any two bonds
and flip all the spins in between them. So it is a lot of confi-
gurations where a lot of spins are flipped.

That is why the one-dimensional case is unstable – in the
sense that it doesn’t require more engergy – with respect
to flipping lots and lots of spins. And as soon as the tempe-
rature is turned on, it costs very little energy to flip whole
big loads of them.
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Whereas in the two-dimensional case to flip one more spin
always costs some energy.

That is the basic mathematical effect that is going on.

Q. : Can’t we see the effect of the difference in the num-
ber of dimensions from equation (36) which in one case is
Ty/2j = tanh y because d = 1, and in the other case is
Ty/4j = tanh y because d = 2 ?

A. : No we can’t. Equation (36) only makes sense when d
is large. We cannot use it for d = 1 nor d = 2.

The whole physics of the mean field approximation, the
whole argument only make sense in high dimension.

Effect of a small external magnetic field

Now let’s turn on a tiny magnetic field and see what hap-
pens. Let’s still concentrate on one spin, the one at the cen-
ter of figure 9 for instance. We saw that its energy function
was

E = −2djσσ (39)

But now, in addition, the whole system has an external ma-
gnetic field. That means that each spin has an extra energy
not related to its neighbors.
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Let’s denote the magnetic field B 14. The new energy func-
tion for one spin is

E = −2djσσ −Bσ (40)

where Bσ is favoring up, that is, B is positive. However we
are going to imagine eventually that B is very small.

Bσ is the extra energy of the spin under consideration, not
related to its neighbors as said. And each of the neighbors
in figure 9 also has such an extra term.

That is the whole difference : instead of the hyperbolic tan-
gent term, in equation (36), being tanh(2djσ), it is going
to be tanh(2djσ +Bβ). Equation (36) now becomes

Ty

2dj
= tanh (y +Bβ) (41)

The right-hand side has a new graph, figure 15.

Figure 15 : Graph of tanh(y +Bβ).

14. Earlier it was denoted H, but it is the same.
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We have assumed Bβ > 0, so that shifts the curve to the
left, compared to that of figures 10 or 11.

Let’s draw again the straight lines which we drew in figure
10 and figure 11, figure 16.

Figure 16 : Graphic solution to Ty
2dj = tanh(y +Bβ).

Equation (41) is a little more complicated than equation
(36) because β is actually 1/T . We can rewrite it

Ty

2dj
= tanh

(
y +

B

T

)
(42)

But anyway, at any given positive temperature, and there-
fore slope of the straight line, β, and shift B/T , there is no
solution at the origin anymore. Only the intersection point
on the right branch, for positive j, is possible 15.

Remember that, when we rotate it clockwise, the straight
line goes from vertical to horizontal as the temperature goes

15. To be accurate, in figure 16, the tanh curve should be slightly
different, with a different shift, for two different temperatures. But
this doesn’t change the conclusion.
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from infinity to zero. The clockwise knob, so to speak, turns
the temperature down.

In the high-dimensional case without a magnetic field, we
saw that there is a phase transition : starting from infinite
temperature, i.e. the straight line vertical, and slowly ro-
tating it, i.e. lowering the temperature, we remained for a
while in a zone of no magnetization, until T reached 2dj.
At that point there was a phase transition. Magnetization
appeared, and of course remained till T was zero.

Now, when the whole system is plunged into a magnetic
field, however tiny, we no longer have this phenomenon of
phase transition appearing at some temperature. At any
positive temperature, there is magnetization, that is there
is a bias in σ.

When T is infinite, the slope of the straight line is vertical,
and at the same time the tanh curve in figure 16 is not
shifted at all, then y = 0 is still the solution. There is no
magnetization, as expected. But as soon as T is less than
infinite, the only solution is magnetization.

Now we can understand better, in the case of no outside ma-
gnetic field what happens when the temperature is below
the phase transition point, figure 11. The three solutions
y = 0, y > 0, and the symmetric y < 0, are possible. But
the solution y = 0, i.e. no magnetization, is unstable. Add
the tiniest little magnetic field, no matter how small it is,
and it will bias one way or the other the whole collection
of spins. It is called spontaneous symmetry breaking.

The argument is that the solution where each spin is equally
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likely to be up or down is unstable. The solution is that
there is fifty fifty probability of everybody being up or eve-
rybody being down. If you turn on the tiniest magnetic field
all the spins will turn one way, and the difference of energy
to go to the other way can be enormous. Why ? Because
if you have a tiny stray magnetic field up and you have a
zillion spins, the total energy of up will be much lower than
down, just because you have this great number of spins 16.
The symmetric argument works if you have the tiniest stray
magnetic field pointing down.

That is what happens with a real magnet too. And that
may help understand what is going on. You could imagine
that you have a real ferromagnet which has equal probabi-
lity of pointing everywhere. And then you bring it into the
field of the Earth. Pretty quickly that magnet knows that
the Earth’s magnetic field is there. And it orients itself in
that direction.

So the configuration where it is equally likely to be in every
direction is unstable. A small stray field will orient it. And
the stronger or the bigger the magnet, the more it is uns-
table.

In fact the Earth magnetic field itself flips once in a while.
There must be an instability there too. But that is for geo-
logists to explain why.

16. Remember that we are in several dimensions. The mean field
approximation requires d to be high. But, as we said, the phenomenon
of phase transition already manifests itself as soon as d ≥ 2.
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