
Lesson 4 : Geodesics and gravity

Notes from Prof. Susskind video lectures publicly available
on YouTube
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Introduction

Before we enter into the heart of the subject – geodesics
and gravity – let’s go through a quick review of some of the
important points and equations we have established so far.

We saw various operations we can do on vectors and ten-
sors : addition, tensor product, contraction, not to mention
expression of their components in various coordinate sys-
tems.

Most importantly, we talked about the operation of dif-
ferentiation. We have a surface or variety, with a tensor
defined at every position. How to calculate the variation of
the tensor when we move a bit from X to X+dX ? If we did
it "naively" we would produce something which would de-
pend not only on the tensor itself, but also on the change of
the curvilinear coordinate system from X to X+dX 1. And
it would not be a tensor. It could not be used conveniently
in frame-independent equations.

We defined therefore a special kind of differentiation cal-
led covariant differentiation. At any given point P on the
surface, we change from the current coordinate system to
a set of local Gaussian normal coordinates – that is coor-
dinates which are closest possible to Cartesian coordinates.
This can be done in several ways, because once we have
one set of Gaussian normal coordinates we can rotate it
and that produces another set. But considering how we use
it it does not matter which set we use.

So we choose one set of Gaussian normal coordinates at
P , and we calculate the ordinary derivatives of the compo-

1. Notice that the idea of a change not due to the tensor itself
is more delicate that it seems. It requires to be defined, and that
is precisely the purpose of considering locally what is going on in
Gaussian normal coordinates.
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nents of the tensor with respect to each direction in that
system. This produces a multi-indexed collection of compo-
nents with one more index downstairs. And we treat this
collection as the components of a tensor expressed in that
Gaussian normal coordinate system.

We can then express the derivative tensor back into the
initial curvilinear coordinates if need be. But remember :
a tensor exists and is well defined irrespective of the basis
we are using – just like vectors exist and are well defined in
a vector space irrespective of any basis. Bases are used to
work on vectors when we need to have them in component
form. The tensor obtained by the above differentiation pro-
cess is called the covariant derivative of the tensor we star-
ted with.

At any particular point P , if we happen to be in Gaussian
normal coordinates, then the covariant derivative is just the
ordinary derivative. But in other coordinates, it takes on a
more complicated form. This is a consequence of the fact
that we want it to be a tensor.

For the simplest example of a tensor, that is a covariant
vector, the formula is

DrVm = ∂rVm − ΓtrmVt (1)

where Γtrm is called a Christoffel symbol.

For a tensor with more covariant indices, the formula is
a simple generalization of equation (1), carrying an extra
term with a Christoffel symbol for each index. For instance

DrTmn = ∂rTmn − ΓtrmTtn − ΓtrnTmt (2)

Equations (1) and (2) are valid in any coordinate system.
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But let’s stress again that, at any given point, if we are
locally using a coordinate system which is as close as pos-
sible to Cartesian – instead of Gaussian normal we will
sometimes call it a "best local coordinate system" – then
the Christoffel symbols are zero, and the right hand sides
reduce to their first terms, that is to ordinary derivatives.

Having recalled all this, let’s turn to a specific tensor : the
metric tensor. Cartesian coordinates are by definition a co-
ordinate system in which the metric is everywhere constant,
moreover is equal to the Kronecker delta tensor. And a
space in which such a system can be found is called flat.

Similarly, locally, a Gaussian normal coordinate system
is one in which the metric tensor is locally the Kronecker
delta tensor up to second order (that is, still behaving like
the Kronecker tensor in the fist order but not in the se-
cond). Therefore, in a set of Gaussian normal coordinates,
at a given point P , the ordinary partial derivatives of the
components of the metric tensor are zero :

∂r gmn = 0 (3)

This is true only in a set of Gaussian normal coordinates.

However, as a consequence, the covariant derivative of the
metric tensor, which is itself a tensor, in any coordinate
system, at any point P on the surface, is equal to zero :

Dr gmn = 0 (4)

Looking again at the Christoffel symbols appearing in equa-
tions (1) and (2), we saw in many ways why they are not
tensors. Unlike tensors, they can be zero in one coordinate
system and not zero in another. We calculated their value,
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in any given coordinate system, in terms of the ordinary
partial derivatives of the components of the metric tensor :

Γtmn =
1

2
grt [ ∂ngrm + ∂mgnr − ∂rgmn ] (5)

We see again that if the ordinary partial derivatives of the
metric tensor components are zero, as is the case in a best
local coordinate system, then the Christoffel symbols are
zero in that coordinate system. If they were tensors they
would have to be zero in any coordinate system, but they
are not.

Equation (5) should be memorized. It is not too hard. Re-
member that tensor indices must display a coherent struc-
ture, and follow the summation convention. On the left
hand side, we have a Christoffel symbol. It has two lower
indices, m and n for instance, and one upper index, t for
instance. Its expression will involve a sum – expressed not
with a big Σ but with the summation convention – over an
index, say, r. The formula begins with a factor 1/2 followed
by the inverse metric tensor grt with upper indices. These
are the t of the Christoffel symbol and an r to operate a
sum. Then, between brackets, the formula contains three
partial derivatives of the form ∂igjk, where ijk cycle over
mnr, two terms with a plus sign and the term with gmn
with a minus sign 2. That is the Christoffel symbol, with
one upper index and two lower indices.

These Christoffel symbols go into equations (1) and (2).
That tends to make covariant derivative rather complica-

2. Equation (5) looks slightly different from equation (19) of chap-
ter 3, because between the brackets we wrote, in the middle term, gnr

instead of grn. But remember that g is symmetric.
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ted objects. If we plugged the expression of the Christoffel
symbols in equations (1) or (2), and even wrote out the
analytic form of the metric tensor that we might have at
our disposal, it would be a nuisance. But that is what co-
variant derivative means.

Equation (1) was the covariant derivative of a vector with
covariant components. Let’s talk now about the covariant
derivative of a vector with contravariant components. We
denote it

DrV
m

As always it starts out with an ordinary partial derivative,
and there is another term. The calculations are exactly the
same as what we did to calculate the covariant derivative
of a covariant vector. They are left to the reader. But he or
she is invited to use the following little trick. We can write

V m = gmpVp

Then we take the covariant derivative of each side. Since,
in a best set of coordinates, the covariant derivative is a
standard derivative, it is easy to see that it will satisfy the
rule of differentiation of a product (see chapter 2 of Volume
1 of the collection The Theoretical Minimum)

DrV
m = (Drg

mp)Vp + gmp(DrVp) (6)

Now what do we know about the first term on the right
hand side ? It involves the covariant derivative of the inverse
metric. We know that the covariant derivative of the metric
is zero – that was equation (4). That means, as we saw, that
in a best set of coordinates the metric is constant up to
second order. Then its inverse must also be constant up to
second order – go into matrix representation if necessary to
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convince yourself. Therefore the first term on the right hand
side of equation (6) disappears, and the equation rewrites

DrV
m = gmp(DrVp) (7)

Now we know how to calculate the covariant derivative of
a vector with lower indices. That is given by equation (1).
If you plug that in equation (7) and do a little algebraic
manipulation, you will find out the formula for covariantly
differentiating a vector with a contravariant index, that is
with an upper index.

Here is the result

DrV
m = ∂rV

m + ΓmrtV
t (8)

As before the formula begins with just a simple derivative.
Then it has a term which would be zero in a set of best
coordinates, because the covariant derivatives would sim-
ply be the ordinary ones. But they are not zero in general
coordinates. In the term with the Christoffel symbol, there
is a sum over t. Generally speaking, in equation (8), we see
that all the indices are in place as expected.

The only peculiarity is the plus sign instead of the minus
sign that appeared in the covariant derivative of a vector
with a lower index. That minus sign was a convention. Here
too, but it must be the other sign.

If we have memorized the covariant derivative of a cova-
riant vector, to remember the formula for the derivative of
a contravariant derivative, it is the only thing we have to
remember. The place of the indices follow consistent rules.
There is no way to be mistaken. The Christoffel symbols
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have one upper index and two lower indices. The upper in-
dex must the same as on the left hand side of equation (8).
The second term on the right hand side is a sum, so there
must be a dummy index t downstairs in the Christoffel sym-
bol, and a corresponding t upstairs on V t.

Just as we generalized the covariant derivative of a cova-
riant vector to tensors with covariant indices, going from
equation (1) to equation (2), we can now generalize the co-
variant derivative to a tensor with any collection of lower
and upper indices. A lower index will entail an extra term
with a Christoffel symbol with a minus sign, an upper index
will entail an extra term with a Christoffel symbol with a
plus sign.

Now we come to the idea of parallel transport. We have
already touched upon it in the previous lesson. But let’s
now spell it out in detail.

Parallel transport

Suppose we have a curved surface – or a higher dimensional
curved space – and some vector field defined on it. That is,
at every point of our space, there is attached a vector. And,
in what follows, the vectors of the vector field will always
be in the tangent plane – or in the higher tangent flat space
– to the space.

We are interested in knowing, when we move along a curve
on the space, see figure 1, whether the field stays parallel
to itself. In figure 1 we have represented the space and the
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curve, but neither the vectors of the vector field nor the
curvilinear coordinates on the surface.

Figure 1 : Vector field and curve on a variety.

At each point of the curve, imagine there is a vector. Let’s
move along the curve. What we want to know is whether
the field stays parallel to itself. "Parallel to itself" between
X and X + dX on the curve means that the covariant de-
rivative of the vector is 0 in the direction of the curve at
that point X.

The covariant derivative is the difference between the vec-
tors at X + dX and at X, as they are written in best lo-
cal coordinates, divided by the components of dX. Let’s
write again the tensor which is the covariant derivative of
a contravariant vector

DmV
n =

∂V n

∂Xm
+ ΓnmrV

r (9)

Now we want to consider the derivative along the trajectory
or curve. How does the vector change from point to point ?
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That simply corresponds to taking the covariant derivative
DmV

n and multiplying it by dXm. Hence, the small change
in the vector is

DmV
ndXm (10)

This formula eliminates the fact that the coordinates them-
selves may evolve as we go from point to point. That is the
essence of covariant derivative.

Expression (10) is the small change in the vector V in going
from one point to its neighbor, measured by the change
of its components in a set of best coordinates, and then
considered abstractly in any coordinate system. Let’s give
it a name

DV n = DmV
ndXm (11)

It is the covariant change in the vector going from one point
to a neighboring point on the trajectory.

Let’s express this covariant change with the building blocks
we have. We multiply the right hand side of equation (9)
by dXm and get

DV n =
∂V n

∂Xm
dXm + ΓnmrV

rdXm (12)

The first term on the right hand side has a simple interpre-
tation. It is the ordinary differential change in V disregar-
ding anything related to a possible change in coordinates.
We denote it dV n. Equation (12) becomes

DV n = dV n + ΓnmrV
rdXm (13)
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It reads as follows : the covariant change in V is equal to
the ordinary change in V plus a term equal to a Christoffel
symbol multiplied by V r and by dXm. This second term is
of course a double sum according to summation convention.

Equation (13) is the formula which tells you how a vector
changes from point to point.

Now suppose we are interested in finding a vector which
is parallel to itself as we move along the curve. Parallel to
itself means that it doesn’t change as we move from X to
X + dX. At each point X, we erect some best coordinates,
and in those coordinates we test whether the vector is chan-
ging. If it doesn’t change in the first order – that is, its first
derivative is zero –, we say : good, the vector is constant
along the little segment. We go to the next little segment,
erect best coordinates at the new point, test again. We do
that along the whole curve. It the tests say that the vector
never changes in the first order, the vector is said to be
parallel to itself along the curve 3.

In summary, if all along the curve the vector V satisfies

dV n + ΓnmrV
rdXm = 0 (14)

then the vector maintains a relationship of being parallel
to itself.

3. There is a notion of calculus to remember : consider a function f
continuous and differentiable over a segment (a, b). Suppose f(a) = 0,
and when we go from x to x+ ε, f(x+ ε)− f(x) < o(ε). The notation
o(ε) means something an order of magnitude smaller than ε. That is,
when ε goes to zero, o(ε)/ε goes to zero too. Then the function f is
equal to zero along the whole segment (a, b). In other words, if over
any small displacement the variation of f is an order of magnitude
smaller than the displacement, f ′ is always zero, and f stays constant.
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Taking a vector from one point and transporting it like this
along a given curve, in such a way that it stays parallel to
itself, is called parallel transport. Making up a benign neo-
logism, we say that we "parallel-transport" the vector.

An important point about parallel transport on a curved
space is that it is trajectory-dependent. On the surface in
figure 2, if we start at point A, take a vector V there, which
lives in the tangent plane, and parallel-transport it to point
B, the vector we end up with at B will depend on the path
we followed from A to B :

Figure 2 : Parallel-transporting V from A to B.

In figure 2, we represented the vector V (or ~V ) at A and
suggested its evolution along two paths. We did not re-
present any coordinate system. Indeed, it is important to
understand that parallel transport is dependent on the tra-
jectory, but is independent of any coordinate system used
to locate points on the surface. At each point, anyway, we
use a set of best local coordinates to do the infinitesimal
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parallel transport of the vector there. When we arrive at
B, the final vector we end up with depends not only on V
or course, but also on the path we followed. The final vector
depends on the bumps and troughs we encountered along
the path, that is on the local curvatures along the path.
Even if we came back to the same point A, depending on
the loop we followed, we would end up with one or another
vector. If there exists a flat connected region – that is with
no hole – and we follow a loop entirely in that region we
will end up with the same vector V .

We already saw this phenomenon on the cone – pointy or
rounded, it doesn’t matter – in the previous lesson. When
we started with a vector on the side of the cone, and parallel-
transported it around the cone we did not ended up with
the same vector. An alternative path would be not to go
around the top of the cone, in which case we would end up
with the same vector – if we were careful to stay on the flat
part. So we see that two paths don’t lead to same result,
figure 3.

Figure 3 : Parallel-transport on a cone
along two different paths.
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Remember that the side of a cone is flat according to our
definition, even though we see it embedded in 3D and in
ordinary language it is not flat. The side of a cone is intrin-
sically flat, because any section of it with no hole can be
laid out on a plane without exerting any distorsion on it.
More mathematically, any connected section of the side is
flat because there exists a coordinate system the metric of
which is the Kronecker delta tensor over the whole section.

Parallel-transporting a vector, that is moving it on the sur-
face while making sure its covariant derivative remains null,
also preserves its length. It can be shown as a consequence
of equation (14).

Figure 4 : Going from A to B on a cone.

The next topic will concern tangent vectors to a curve, and
whether the tangent vector stays constant or not. When
the tangent vector stays parallel to itself we will see that
the curve is a geodesic. For instance on the cone of figure
3, if we go from A to A around the cone, we don’t follow a
geodesic because obviously the tangent vector changes di-
rection. Even when we go from A to B as in figure 4, this
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is not a geodesic.

On the Earth boats and airplanes try to follow geodesics for
reasons we shall see. When, while we are sitting on a plane,
going from Paris to New York, the crew shows on a screen
our trajectory, we are often surprised to discover that we
do not follow "a straight line". The quotes are because the
notion of straight line on the Earth unless we are in a small
region is, as we know, something to handle with care.

Figure 5 : On a plane from Paris to New York.

Tangent vectors and geodesics

We arrive at the notion of tangent vector to a curve and of
geodesic.

On a surface where we consider two points A and B, a geo-
desic between A and B is a curve with certain properties.
One can define a geodesic in several ways :
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1. The curve with the shortest distance between A and
B is a geodesic.

2. A curve whose length is stationary when you wiggle
it is a geodesic.

3. A third better definition looks at what happens lo-
cally along the curve. A curve which at each point is
as straight as possible is a geodesic.

Of course this last definition is more intuitive than mathe-
matical. So let’s make it more precise. If at each point along
the curve, the covariant derivative of the tangent vector 4 is
zero, that is if the tangent vector doesn’t change, then the
curve is as straight as possible.

Let’s try to build more intuition about it before turning to
the maths. Suppose you have a curved terrain, as in figure
6. For convenience, it is a two dimensional example, but
there is nothing special about two-dimensional spaces in
defining the notion of geodesic. Secondly suppose we have
a car that we drive on this terrain. And assume that the
size of a car, in particular the distance between the front
wheels, is small by comparison with any curvature. In other
words, the car is very small compared to the hills and the
valleys.

We start from A in some direction, and driving straight in
the above sense – never turning the steering wheel –, we end
up at B. Our trajectory will wind between the hills – or we
may even start from the top of a hill, that is, from a point
with clear curvature. The curve that we will execute with
our car in the space, keeping the steering wheel straight, will

4. When we talk about the tangent vector without further specifi-
cation, it is of length one.
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nevertheless be as straight as possible. It will be a geodesic
in the space.

Figure 6 : Driving a car straight ahead, on a curved terrain.

Another way to characterize a geodesic is to say that the
tangent vector along the curve is constant. We have an in-
tuitive perception of what the tangent vector is. But let’s
define it more precisely.

Consider a curve, and a point at coordinate X on it. And
take a neighboring point, figure 7. The pointsX andX+dX
are separated by dX which we can also denote, in ten-
sor style, dXm. And consider a vector starting a X, going
through X + dX, and of length one.

Then take the limit when the second point X + dX ap-
proaches the first point X. The resulting vector is called
the tangent vector at X.
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Figure 7 : Construction of the tangent vector at a point.

Consider the distance dS between the two points X and
X + dX, as you remember, it is defined by

dS2 = gmn dX
mdXn (15)

The way we construct the tangent vector in the X coor-
dinate system is very simple. The m-th component of the
tangent vector is

tm =
dXm

dS
(16)

It can be proved that equation (16) produces a vector of
length one. The exercise is left to the reader. There is one
such vector at each point along the curve. It is called the
tangent vector. It points in the direction between two neigh-
boring points and its length is one.

Let’s now turn our attention to curves the tangent vector
of which is constant ? If we plug-in the tangent vector in
equation (14), these curves satisfy the following equation :
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dtn + Γnmrt
rdXm = 0 (17)

This equation holds because once you have set your stee-
ring wheel dead ahead, you are moving in as straight a line
as you can. So the covariant change of the tangent vector
is zero. See the example below to build your intuition.

Example of calculations with Christoffel symbols

In order to build our intuition about geodesics, particularly
where a surface has curvature – like a rounded hill –, let’s
see a complete example with calculations.

Figure 8 : 2-sphere with polar coordinates.

Consider a point P on the surface of a sphere. Mathemati-
cians call such a surface a 2-sphere, because its points are
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located with two coordinates. Let’s use the ordinary lati-
tude θ and longitude φ, and the ordinary distance we are
familiar with, for instance on the Earth.

The objective of the exercise is to show that a meridian is
a geodesic. In other words, when we follow a meridian the
tangent vector doesn’t change.

Exercise 1 : We are on a 2-sphere with polar coordi-
nates θ and φ, see figure 8.

1. Show that the metric tensor of the ordinary dis-
tance is (

1 0
0 cos2θ

)
2. Express the eight Christoffel symbols using this

metric. Show that

Γ1
22 = sinθ cosθ

Γ2
12 = Γ2

21 = −tanθ

and all the others are zero.

3. Show that the tangent vector to a meridian has
everywhere components t1 = 1 and t2 = 0.

4. Show that the tensor which is the covariant deri-
vative of this tangent vector is(

0 0
0 −tanθ

)
5. Show that if we follow a meridian, the covariant

change of the tangent vector is always zero.
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Doing this exercise will show you that doing actual calcu-
lations with Christoffel symbols, even on a simple example,
quickly fills pages. It will also show you that even on a
surface with curvature there are paths where the tangent
vector doesn’t change. These are the geodesics.

In the exercise we looked at a meridian, because the
polar coordinates make it simple to study, but of course by
symmetry any great cicle is a geodesic.

We might feel, in figure 8, that the tangent vector changes
when we move along a meridian, but it is because we look
at the 2-sphere embedded in 3D Euclidean space.

If we turned our steering wheel, however, and in the tan-
gent plane swerved from our straight path, then the tangent
vector of our trajectory would change.

More on geodesics

We can write equation (17) of a geodesic in a slightly neater
form. Let’s divide both sides of the equation by dS, that is,
by the little distance between two neighboring points with
coordinates X and X + dX, see figure 7.

Equation (17) becomes

dtn

dS
= −Γnmr t

r dX
m

dS

But dXm

dS is tm, so we can rewrite equation (17) as

dtn

dS
= −Γnmr t

r tm (18)
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This equation only involves the tangent vector. It also of
course involves the Christoffel symbols, but let’s suppose
we are given them. Then equation (18) is the equation of
motion on a geodesic.

The gammas are made up out of the metric. So if we know
the metric, we know what to put on the right hand side.
And we can say one more thing : since the tangent vector
t itself is a derivative, we can write the left hand side as a
second derivative.

d2Xn

dS2
= −Γnmr t

r tm (19)

Does this look like anything familiar ? May be not. But if
we were to think of S as some measure of time as we moved
along the curve, then the second derivative of position on
the left would be acceleration.

So if S were like time, or if S were increasing uniformly
with time, then we would have the following fact : an acce-
leration is equal to something that depends on the metric
and on t. We will deal with tr tm later.

Let’s observe for the time being, that equation (19) has the
look of a Newton equation : acceleration is equal to some-
thing that depends on the gravitational field, because, as
we will see, the metric is the gravitational field.

We will see that equation (19) replaces Newton’s equation
for the motion of a particle in a gravitational field.
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In other words, in some sense a particle in a gravitational
field moves along the straightest possible trajectory. But
it moves along the straightest possible trajectory through
space-time not just through space.

Space-time

So now we have to come to space-time. So far we have
been studying the mathematics of curved spaces as Rie-
mann would have understood them.

The German mathematician Bernhard Riemann (1826-1866)
is the one who invented most of the mathematics for cur-
ved spaces. But these were, so to speak, ordinary curved
spaces in which distance was governed by the Pythagorean
theorem. In Riemann spaces, the square of the distance is
always positive.

A Minkowski space is a space-time which also has a na-
tural measure of distance along curves or between points
– also called events in the space-time –, be they neighbo-
ring points or distant points. As in Riemannian geometry,
in Minkowski geometry the distance is generally expressed
through its square. But in Minkowski space this square can
be negative.

What is the name of the distance in a Minkowski space-
time ? Answer : the proper time. It applies to any pair of
events, far away, close, or infinitesimally close.

23



Figure 9 : Proper time between two events P and Q.

Given two points P and Q in space-time, the space-time
distance between them – and now let’s not call it the space-
time distance, let’s call it the proper time – is equal to ∆t2

not plus ∆X2, but minus ∆X2.

∆τ2 = ∆t2 −∆X2

When P and Q are infinitesimally close, it becomes

dτ2 = dt2 − dX2 (20)

And X may stand for three spatial coordinates (x, y, z).
With a Greek index it may even stands for the four coordi-
nates, see Xµ below.

It is conventional to rewrite equation (20) as

dt2 − dX2 = −dS2
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where S is called the proper distance. Some authors prefer
to work with τ , some prefer to work with S. In this book,
we will mostly use the proper time τ .

Another convention it to write equation (20) as

dS2 = gµν dX
µ dXν (21a)

or
dτ2 = −gµν dXµ dXν (21b)

where the readers who have read volume 3 of The Theore-
tical Minimum, on special relativity, are familiar with the
notation Xµ with a Greek index :

Xµ =


t
x
y
z


According to standard convention this is also sometimes
noted

Xµ =


X0

X1

X2

X3


where the Greek index µ runs over 0 to 3.

When we use a Latin index, we mean only the three spatial
coordinates, that is, if you read Xi, this means that i runs
over 1, 2 and 3, or in other words Xi runs only over the
spatial coordinates.
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Let’s comment on equation (21a). The indices µ and ν run
over 0 to 3. The equation has exactly the same form as the
usual equation for the distance in Riemannian geometry
that we have already often used, see equation (1) of chap-
ter 3 for instance.

The only new thing in the Minkowski geometry is the metric
tensor gµν or the corresponding matrix. It is still diagonal,
but it has a minus 1 corresponding to the time axis, and
three +1 for the space axes. Since it plays a central role, it
has a name. We use the Greek letter η (written and pro-
nounced "eta"). It is called ηµν (pronounced "eta mu nu").

ηµν =


−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 (22)

With this metric tensor, we can check that equation (21b)
expressing the proper time is the same equation as

dτ2 = dt2 − dx2 − dy2 − dz2

What do all the zeros mean in the metric tensor ? They
mean that there are no cross terms like dt dx, or dy dz in
the definition of the proper time.

The coordinates (t, x, y, z) are coordinates specific to
Minkowski geometry. They are the analog of Cartesian co-
ordinates in Euclidean geometry.

In special relativity, that is all there is to the coordinates
and the metric tensor.
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In general relativity, the metric tensor becomes a function
of space and time. We then call it gµν(X) (where X clearly
stand for an event with four coordinates). And equation
(21b) becomes

dτ2 = −gµν(X) dXµ dXν (23)

There is one more important thing, to mention at the out-
set, on the metric tensor in relativity. What is the difference
between the matrix of equation (22) and the identity matrix
of Euclidean metric ? Well, it has a minus 1 in first position.
But more importantly there is an invariant concept about
gµν(X) : it has one negative eigenvalue and three positive
eigenvalues. And this will always be the case in general re-
lativity.

We are not going to spend much time dealing with the
mathematical fact. The equations will always automatically
take care of all of that. But what does it mean that there is
one negative eigenvalue and three positive ? It means there
is one dimension of time and three dimensions of space.

We could write a metric with two minus signs on the
diagonal. It would correspond to a crazy space with two
time directions and two space directions. That is not allo-
wed in relativity.

At the beginning of his work on general relativity, Einstein
realized that the metric of space-time should always have
one negative and three positive eigenvalues – locally at any
point in space-time. But, as said, we won’t have to worry
about it. It will be taken care of by the equations them-
selves.

Other than that, all that we have done in Riemannian geo-
metry, all the equations involving metrics, covariant deri-
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vatives, curvature, geodesics, etc. will be exactly the same
in the space-time geometry of general relativity.

What does flat mean in space-time ?

Flat no longer means that there is a coordinate system in
which the metric is the Kronecker delta. Now it means that
there is a coordinate system in which the metric has the
form of ηµν , that is, the Kronecker delta except with one
negative sign.

Remember that in Riemannian geometry, the condition for
flatness was not that the metric we were dealing with was
the unit matrix, but that there existed coordinates – other
coordinates that we could find – in which it would be the
unit matrix.

Similarly, in Minkowski geometry, the condition for flat-
ness in space-time is not that the metric be ηµν , it is that
there exist coordinates in which the metric can be brought
to the very simple form of ηµν . Mathematically speaking
this condition is equivalent to saying that the metric must
have one negative eigenvalue and three positive eigenvalues.

That is the notion of a flat space-time. And if the space-
time cannot be brought to the form of ηµν , then it is curved.

How do we check whether the space-time is curved ? We
do all exactly the same things that we did in Riemannian
geometry.

Here is a recap of the analogies that we have already made
so far, as well as those we shall see :
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Flat spaces
Euclidean geometry → Minkowski geometry
Kronecker δ tensor → η tensor
Newton physics → special relativity

Non flat spaces (always locally flat)
Curved metric → gravitational field
Riemannian geometry→ Einstein general relativity

Before going into spaces whose curvature is due to real gra-
vitational fields (i.e. to the presence of massive bodies), we
shall spend some time with "flat" spaces with Minkowski
geometry. Standard terminology, however, doesn’t call them
"flat", it simply calls them "spaces endowed with the Min-
kowski metric".

So for a while we are going to do special relativity. We will
deal with a space with the ηµν metric.

And we are going to wind up looking at it in polar coordi-
nates – not ordinary polar coordinates but hyperbolic polar
coordinates. The name is awe-inspiring, but the concept is
simple and well adapted to space-time and particles moving
in it, particularly particles accelerating in it.

Since we know from chapter one that there is a link bet-
ween gravity and acceleration, and our ultimate objective is
to describe relativistic motion of particles in gravitational
fields, it is natural to start with studying particles accele-
rating in the framework of special relativity.
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Special relativity

We are in the space-time of special relativity, which we can
also call a Minkowski space. Its metric is defined by the
tensor

ηµν =


−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 (24)

Our goal is to define the notion of a uniformly accelerated
reference frame.

We have already met it in chapter one when we illustrated
the principle of equivalence with a the gravitational field of
the Earth (in a very small region where it can be viewed
as uniform) and the apparent field we experience in an ele-
vator being uniformly accelerated. But in chapter one, we
staid at an elementary somewhat casual level.

In fact, in special relativity there is a difficulty with the
notion of uniformly accelerated reference frame. Consider
a bunch of points, separated by a fixed distance, as in
figure 10. We think of them as forming a frame.

Figure 10 : Points in space with a fixed separation.
We try to move them "uniformly".
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Suppose we start accelerating them along the X-axis, and
let each have the same constant acceleration. We would
think that they would maintain the same distance between
them – that they would keep forming a frame. But dis-
tances, time and simultaneity do odd things when we start
moving sizeable objects.

In fact if we gave all the points the same trajectory, in
particular the same acceleration, we would discover that,
in the rest frame of the first point for instance, they would
neither stay fixed, nor evenly distributed. The distance bet-
ween them would grow larger and larger. That means for
example, if there were strings between them, that as they
started moving, in an attempt to keep their distance uni-
form, the strings would stretch, and eventually break.

That is not what we would think of a uniformly accele-
rated reference frame, as we are accustomed to from non-
relativistic physics. What is nice, in non-relativistic phy-
sics, about a uniformly accelerated reference frame, is that
it keeps the same structure, the same shape. The distances
between points stay the same. If you had strings connecting
the points they wouldn’t get strechted.

There is a second difficulty about the simplistic idea of uni-
formly accelerating a particle in special relativity : if we
waited long enough, in the stationary frame, the particle
would eventually exceed the speed of light.

So uniform acceleration, to the extent that it exists and
makes good physical sense, is not as simple as just moving
the points in figure 10 all with the same accelerated trajec-
tory.
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So we are going to construct what a relativist would call
a uniformly accelerated reference frame. But to do so, we
need to go back one step, to Euclidean space and talk about
polar coordinates, fig. 11, because – surprisingly enough –
the uniformly accelerated coordinate system is the analog
of polar coordinates.

Figure 11 : Euclidean and polar coordinates in the plane.

Here are some equations, expressing the coordinate trans-
formation from polar to Cartesian coordinates, which the
reader should be familiar with

x = r cos θ

y = r sin θ
(25)

We also have
cos2 θ + sin2 θ = 1 (26)

which is the same as saying that

x2 + y2 = r2 (27)
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Finally there are two more equations to remember

cos θ =
eiθ + e−iθ

2

sin θ =
eiθ − e−iθ

2i

(28)

The reader can check that cos2 θ plus sin2 θ is equal to 1. It
is a simple identity, true for all possible θ. Equations (25)
to (28) are the basic equations governing ordinary polar co-
ordinates.

What is the equation of a cicle around the origin ? It is just

r = constant

Imagine a point moving around the circle with uniform ve-
locity, therefore uniform angular velocity. Then the magni-
tude of the acceleration of that point is constant around the
circle. The vector acceleration constantly points toward the
center of the circle.

What does it have to do with relativity ? In relativity we
write basically the same equations to define a uniformly ac-
celerated point.

We turn to the basic representation of space-time, which
is the analog in special relativity of figure 11. In figure 12,
we see the light cone : the two diagonal straight lines in
grey. From the volume 3, in the collection The Theoretical
Minimum, on special relativity, we know that they represent
the trajectory of a light ray starting at time 0 from the
origin and going either to the right or to the left.
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Figure 12 : Light cone (it would be a cone
if we had two spatial coordinates).

Let’s see now what is the analog of the uniformly accelera-
ted point on the circle of figure 11.

In other words, what is a uniformly accelerated point in
special relativity ? It is defined as a point moving on a hy-
perbola as in figure 12. The point is clearly accelerated. It is
not moving with constant velocity. Constant velocity would
correspond to a straight line with some slope higher the 45°.

In fig. 12, we see that from the past until time 0, the point,
or particle, moves, spatially on the X-axis, to the left to a
minimum point M . At M its velocity is zero. Therefore, in
the (X, t) diagram, at M the tangent to the trajectory is
vertical.

Then, after point M , the particle is moving again to the
right. In the (X, t) diagram, as the point moves up and
up, the tangent to the trajectory gets closer and closer to
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45°, that is the particle gets closer and closer to the speed
of light, but never exceeds it.

Next step is the following mathematical question : what is
for a hyperbola the analagous of the equation for a circle in
ordinary polar coordinates ? Answer : there exists a system
of coordinates in which the hyperbola of fig. 12 has a very
simple equation akin to equation (25) for the circle in polar
coordinates. It uses hyperbolic polar coordinates.

In equation (25), expressing the transformation of coordi-
nates between Cartesian and ordinary polar, we shall re-
place the sine and cosine functions by their hyperbolic ver-
sion. Let’s also replace the angle θ by a parameter ω. The
correspondence is

cos θ → coshω

sin θ → sinhω

The mathematical definitions of the hyperbolic sine and
cosine functions are very similar to those of ordinary sine
and cosine. But there is no more i =

√
−1 coefficient.

coshω =
eω + e−ω

2

sinhω =
eω − e−ω

2

(29)

Analogously to equation (26), the reader can verify that

cosh2 ω − sinh2 ω = 1 (30)

The coordinates of a point P in the (X, t) diagram are now

X = r coshω

t = r sinhω
(31)
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Equations (31) define r and ω from X and t. The parame-
ter ω is not a geometric angle. But when we move along a
hyperbola with the light-ray trajectories as asymptotes, see
figure 12, it is what increases from −∞ to +∞ – just like θ
was the parameter that changed as we moved along a circle
centered at the origin. And on such a hyperbola, r doesn’t
change. The parameter ω plays on the hyperbola the role of
the angle on the circle. It is sometimes called the hyperbolic
angle.

As before, equations (31) express nothing more than a coor-
dinate transformation between the Minkowski coordinates
(X, t) and the hyperbolic coordinates (r, ω).

Any point P in space-time can be located by its Minkowski
coordinates (X, t) or by its hyperbolic coordinates (r, ω).

Figure 13 : Hyperbola in hyperbolic coordinates.

In figure 13, all the points on the hyperbola have the same
hyperbolic radius r. Its value is the distance between O and
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M . And it is a characteristic of the curve. On the other
hand, the hyperbolic angle ω increases up to infinity as we
move on the hyperbola closer and closer to its asymptote,
that is, as the particle moves spatially farther and farther
away on the X-axis.

So we have in Minkowski geometry the analog to the circle
in Euclidean geometry : the hyperbola, as in figures 12 or
13, in hyperbolic polar coordinates given by equations (32),
corresponds to a constant value r, and the parameter ω
going from −∞ to +∞. This will be handy to study a uni-
formly accelerated particle because by definition it moves
along such a trajectory.

Uniform acceleration

Now that we have a good understanding of what r and ω
are in the hyperbolic coordinate system, which do you think
is like time ?

On the X-axis, coshω = 1. So if we move to the right on
this axis, we just increase r. Therefore r is like a space co-
ordinate.

If from point M we travel upward on the hyperbola of fi-
gure 13, r stays fixed and we increase ω. Going upward is
the analogy with traveling around the circle in figure 11.
Therefore ω is like a time coordinate.

Just as there was a uniformity to the circle – at any point
you could define the radius r and it was constant –, there
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is an analog uniformity to the hyperbola : the hyperbolic
radius r is constant on a hyperbola. In figure 14, we can see
hyperbolas for different values of r.

Figure 14 : Hyperbolas for different values of r.

The analog of equation (27) on a circle becomes on a hy-
perbola

X2 − t2 = r2 (32)

The hyperbolic polar coordinates are just new coordinates
for every point in the standard Minkowski diagram (t, X)
of figure 14. Those coordinates in special relativity are the
closest thing that exists to uniformly accelerated coordi-
nates.

For a given ω the distances between the points corres-
ponding to r = 1, r = 2, r = 3 etc. stay the same. In
other words, in figure 14, not only MN = NP but also
MN = NP = RS = ST . That can be checked with the
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tools we learned in volume 3 of the collection The Theore-
tical Minimum, on special relativity.

That means that as the Lorentz frame of reference accele-
rates the distance between neighboring particles just stay
the same. Notice also that points O, M , N and P are si-
multaneous, with t = 0. And points O, R, S and T are also
simultaneous for another observer which is moving with a
certain speed relative to O.

Exercise 2 : In figure 14, what is the speed, re-
lative to the stationary frame, of the observer
who sees R, S and T simultaneous ?

What is unusual here, and different than an ordinary ac-
celerated frame of reference, is that the accelerations along
the different trajectories corresponding to r = 1, r = 2,
r = 3, etc. are different.

Let’s look at a trajectory in the same collection as the hy-
perbolas of fig 14, but with a very small r, figure 15.

On the hyperbola with a very small r, the particle makes a
sudden change of direction when it comes close to the ori-
gin, and then speeds off to the right again. That indicates
that its trajectory has a much larger acceleration.
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Figure 15 : Hyperbola with a very high acceleration.

Another important fact : on a given hyperbola, the proper
acceleration, that is, the actual acceleration – the actual
push – that an observer would feel, is uniform along the
trajectory. This is the analog of the fact, on a given circle
in fig 11, that at any point on the circle an observer feels
the same acceleration in magnitude toward the center.

On the other hand, the accelerations on two different hy-
perbolas are different. Again that is the analog of the fact
that on a circle with a larger radius the centripetal accele-
ration is smaller. Conversely the tinier the radius the bigger
the acceleration.

The message to remember is this : if you want to define
uniform acceleration, you ought to have acceleration which
is constant in time. That is okay. But then you are necessa-
rily going to have different accelerations at different points
of space, that is, on trajectories with different r’s.
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The proper acceleration of a particle with coordinates (t,X) 5,
is defined by d2Xn/dτ2. It is the rate of change of the proper
velocity, with respect to proper time. The proper velocity
being itself dXn/dτ .

We have seen many times now the definition of proper time.
Remember that it has a physical meaning. It is the time re-
corded and displayed by a watch attached on the wrist of
an observer travelling in space-time.

So, if we consider the collection of particles of figure 10,
fixed with respect to each other, the further out the par-
ticle is in space, that is, the further out to the right on the
X-axis, the smaller its acceleration is. In other words, the
further to the right, the straighter is its trajectory.

In fact we can write an equation for the proper accelera-
tion. The proper acceleration, A, of a particle on one of the
trajectories in figure 15 depends only on r. Let’s choose one
of them, and call it R. And let’s work in units where the
speed of light c is equal to 1. Then along the hyperbola with
parameter R, the proper accelaration is given by

A =
1

R
(33)

The bigger the R, the smaller the acceleration. It is the
same thing that was going on on the circle in figure 11 : the
smaller the radius of the circle was, the bigger the accele-
ration had to be for the particle to stay on the circle.

Equation (33) is does not look consistent unit-wise. What
is the unit of acceleration ? It is length divided by time

5. Here X stands for (X1, X2, X3) or equivalently (x, y, z).
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divided by time, i.e. l/t2. Let’s rewrite this dimension as

1

l

l2

t2

In other words, acceleration has unit 1 over a length times a
velocity squared. So in equation (33) – we are now familiar
with this kind of reasoning on dimensions – there is a 1
actually with the dimension of the square of a velocity. It
is the speed of light, with value 1 in the units chosen. If we
worked in general units where the speed of light has value
c, equation (33) would be

A =
c2

R
(34)

This means that for a fixed R, at human scale, the accele-
ration of a particle, in the collection of particles of figure
10, is very large. We have to go to a very large R before we
get to particles with a moderate acceleration.

We usually work in this book with units in which c = 1,
but the reader should keep in mind that the acceleration
of a particle, whose coordinates are given by equation (31)
with r fixed, is very big unless r is very big.

By the way, the acceleration on a given trajectory in figure
12, for example the acceleration on the hyperbola r = 2, is
the ordinary acceleration at point N . And it is the constant
acceleration that we would experience all along the trajec-
tory if we rode a particle.

Notice that the uniformly accelerated reference frame we
have been studying is defined relative to a particular origin.

42



The hyperbolic coordinates r and ω depend on the statio-
nary frame selected. We could change for another stationary
frame. This would produce different r and ω. But no real
physics depends on the choice of the stationary frame.

Uniform gravitational field

We have introduced a somewhat arbitrary set of coordinates
for our stationary frame 6. In that set of coordinates we are
now going to write the equation of motion along a geodesic.
And we are going to see that the equation of motion along
a geodesic looks like a particle falling in a uniform gravita-
tional field.

Let’s first talk about the metric of the Euclidean plane in
ordinary polar coordinates as we did in figure 11

dS2 = r2dθ2 + dr2 (35)

This just says that the distance between a point P , with
coordinates (r, θ), and a close neighbor on the same circle,
with coordinates (r, θ + dθ), see fig. 11, for a fixed dθ, in-
creases linearly with r

This is the metric of the plane in polar coordinates. Notice
that the metric is not the Kronecker delta. It has dr2. The

6. It just has to be Galilean, that is, it has to be such that in it
Newton’s equation has the simple form F = ma.
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matrix of this two-dimensional metric looks like this

gmn =

(
r2 0
0 1

)
(36)

Why is it not the Kronecker delta. Not because the space
is curved, but because the coordinates are curvilinear. The
space itself is flat. Indeed it is the plane, and we can go
back to Cartesian coordinates (x, y) in which the metric is
the Kronecker delta.

Staying in the flat plane, the analog with the hyperbolic
coordinates (r, ω) is

dτ2 = r2dω2 − dr2 (37)

We are considering only two dimensions, time and one spa-
tial coordinate 7. For the moment we will ignore y and z,
because we don’t need them. We will be thinking about a
particle falling in a gravitational field along a vertical axis
denotedX or x. The coordinates y and z would be the other
spatial coordinates and they don’t matter for the problem
we are going to discuss.

So the two coordinates that we will be interested in are ω
and r, that is respectively, time and distance from the ori-
gin. And equation (37) is the metric.

We want to see what this metric has to do with gravitation.

7. We express the metric in terms of the proper time τ rather than
proper distance S. This makes no essential difference. It is the same
geometry. When we want specifically to talk about a distance we will
be careful to change the sign of the right hand side of equation (37).
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Gravitation is supposed to have something to do with the
metric. So consider again figure 15, which represents a bunch
of particles fixed with respect to each other, in a frame that
is uniformly accelerated relative to the stationary frame.
The spatial x-axis, even though we said that it is a vertical
axis along which a particle is falling, is represented as usual
horizontally.

As we explained in the previous sections, a uniformly acce-
lerated frame is a more subtle idea than it seems. In fact
each particle keeps a constant acceleration on its trajectory.
But the accelerations of different particles are different.

As we move to the right, with r increasing, the acceleration
of the corresponding particle is smaller and smaller, fig. 15.
If we go very far away, we can find a particle, corresponding
to a hyperbolic radius R, and whose acceleration is g equal
to 10 meters per second per second. Remember that the
formula for its acceleration is

c2

R

We set this equal to g. It gives

R =
c2

g

We have to go out this distance from O to find a particule
with acceleration g. The speed of light c is 3 times 108 me-
ters per second, so c2 is approximately 1017, and R about
1016 meters. Therefore we have to go out 10 000 billion
kilometers to find a particle with approximately the acce-
leration of the Earth gravitational field on its surface. So
let’s go there.

45



Moreover, while there, if we don’t move too much along the
r direction, the acceleration g = c2/R won’t change much.
It is similar to moving on a vertical axis near the surface of
the Earth : the gravitational field doesn’t change much.

Figure 16 : Hyperbolas at R and at R+ y.

Think of the X-axis as the axis of fall of a particle. Falling
would be going to the left. And for the heck of it, we call y
the distance from R on that axis. Also for convenience, we
no longer call the time, t. We call it T .

y is a new first coordinate in the hyperbolic polar coordi-
nates (r, ω).

y = r −R (38)

All the particles with a moderate y have the same accele-
ration g.

Then we rewrite the metric of equation (37) using the new
local coordinate y.

dτ2 = (R2 + 2Ry + y2)dω2 − dy2 (39)
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This creates an even more complicated looking metric, but
not much. And we shall simplify it, because we are going to
focus on a limited region around R 8. We rewrite equation
(39) as

dτ2 = (1 +
2y

R
+
y2

R2
) R2 dω2 − dy2 (40)

One more step concerning coordinates : we give Rω a new
name, we call it t. Before rewriting again equation (40), let’s
notice that y/R is very small. y is measured in meters or
kilometers – for instance the stunt man Felix Baumgartner,
in 2012, dived from 39 km – while R is 1016 meters. And
y2/R2 is even much smaller. Wee are going to keep y/R
and neglect y2/R2. Equation (40) becomes

dτ2 = (1 +
2y

R
) dt2 − dy2 (41)

We end up with a metric which apart from the term 2y/R,
which is small, just looks like the good old Minkowski me-
tric dt2−dr2. It is space and time in a more or less ordinary
way, but with a little correction.

The little correction 2y/R is what accounts for gravitation
in the accelerated reference frame.

Keep in mind, however, that we are really talking about
flat space. So far we have not introduced any curvature.

8. Notice that when we talk about r, R, y or ω, we no longer talk
about the Minkowski coordinates (x, t), but about the hyperbolic
polar coordinates (r, ω). There is, however, a simple correspondence
between r and x : when ω = 0, they are equal. That is why we can talk
casually about R on the X-axis, while also meaning all the points on
the hyperbola intercepting the horizontal axis at that point, because
they all have hyperbolic radius R.
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The space we are working in is really a flat space. With
a change of coordinates we can go back to the Minkowski
metric. Therefore any gravitation that we find is in a sense
the same fake gravitation that we found in the accelerated
elevator of chapter 1.

We are studying physics in an accelerated coordinate sys-
tem. It is the elevator being pulled toward the right. And
what do we expect to find ? We expect to find that in that
elevator there is an effective gravitational field. We can also
call it a fictitious gravitational field. It is this field that is
associated with the term 2y/R in equation (41).

To get a better understanding of the connection, let’s now
study the motion of a particle in a metric given by equation
(41). In units where c is equal to 1, we have g = 1/R. The
metric can be rewritten

dτ2 = (1 + 2gy) dt2 − dy2 (42)

Have you ever seen the expression gy in studying gravita-
tion in a uniform field ? If we introduce the mass m of a the
particle, mgy is simply the potential energy. The term gy
is called the gravitational potential. And the term (1 + 2gy)
is one plus twice the gravitational potential.

It is extremely general. In any kind of gravitational field, as
long as it is more or less constant with time, and not doing
anything too radically relativistic, the coefficient in front of
dt2 in the metric is always one plus twice the gravitational
potential.

Why do we call gy the gravitational potential other than
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that it just looks like it ? Answer : because if we work out
the equation of motion of a particle in the metric given by
equation (42), we will find that, as long as the particle is
moving slowly, as long as we can make a good Newtonian
approximation, as long as things are not too relativistic,
the equation of motion that we will find is the same as that
of a particle falling along the y-axis in a uniform gravita-
tional field, as we have calculated it in classical mechanics,
see volume 1 in the collection The Theoretical Minimum.
What we mean by the y-axis of course is still the unique
spatial axis, but near point R.

The whole point of the preceding section on uniform ac-
celeration was to explain that a uniformly accelerated refe-
rence frame is something more subtle than just accelerating
a thirty meter long steel beam along the X-axis. We had to
define what we meant by a uniformly accelerated frame. It
lead to this funny construction where points at different dis-
tances from O, measured for instance at time 0, each have
a fixed acceleration, but the acceleration differs from point
to point. On the other hand we can check with a Lorentz
transformation, in the frame of one of the moving points
at velocity v, that the distances measured simultaneously
by P between the points don’t change. And it also lead to
hyperbolic coordinates and to figure 14.

Aside from that, it is really ordinary physics. There is an
accelerated elevator at M , see figure 17, there is another
accelerated elevator at N , there is another one at P , there
is one at R, etc. In other words, it is just a bunch of eleva-
tors at different positions each being accelerated. The only
specific idea is that, for them to form a uniformly accele-
rated frame, they each must have a different acceleration.
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They have to be accelerated, according to equation (34),
with acceleration c2/R.

We are interested, in figure 17, in the accelerated elevator
at hyperbolic radius R. Of course the elevator should be
imagined on its side. The bottom of the elevator, to be
precise, follows the trajectory with hyperbolic radius R,
that is, the thick trajectory in figure 17.

It is important to understand that the trajectory in
space-time of the floor of the elevator is not a little hori-
zontal segment going to the right on the X-axis – although
it is true that if we look only at the space coordinate X,
the elevator does move very slightly to the right. Its trajec-
tory in space-time is the almost vertical line, in figure 17,
because it has only acceleration g, which is rather small.

And in the hyperbolic coordinates (r, ω), the hyperbolic
radius of the elevator remains R. To the right of R there are
other trajectories – trajectories of points inside the elevator
–, and they also have an acceleration very close to g.

Figure 17 : Floor of the elevator.
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The local coordinate y – it is hyperbolic radius shifted by
R – is a coordinate to locate things inside the elevator, that
is, it is the height of a point or a particle above the floor.

The metric of space-time in the coordinate system (t, y),
which we built to locate things inside the uniformly acce-
lerated elevator, is given by equation (42), which we repro-
duce below

dτ2 = (1 + 2gy) dt2 − dy2

We had to do a little bit of work to arrive at this equa-
tion, but now for us it is a given. It is the metric tensor, in
the coordinate system (t, y), at points in the vicinity of a
point moving with acceleration g. And in order to show the
equivalence of a uniform acceleration and a gravitational
field, we chose for the acceleration g the same value as the
gravitational field of the Earth.

What is the rule to figure out how a particle moves ?

The rule about particle motion is that particles move on
geodesics – not geodesics of space but geodesics of space-
time. In other words, we take the metric of space-time, wha-
tever it is, and we go through exactly these same operations.

The metric of space-time that we are given is equation (42).
And the equation of motion of a particle is equation (19),
which we reproduce below, with a change of sign and a new
numbering,

−d
2Xn

dS2
= Γnmr t

r tm (43)

It is the equation of motion which says : it is a geodesic.
Go straight ahead. But not straight ahead in space now,
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straight ahead in space-time. Otherwise the equations are
the same.

We shall write it slightly differently, using dτ instead of dS.
Remember that dτ2 is just the opposite of dS2. So the left
hand side of (43) becomes

d2Xn

dτ2
(44)

This is called the proper acceleration. As long as the eleva-
tor is moving slowly, in other words if it hasn’t been acce-
lerating long enough to get up near the speed of light, then
the proper time and the ordinary time are essentially the
same. And expression (44) is just the ordinary acceleration.

We choose X to be y. We want the y component of accele-
ration. Then expression (44) is simply

d2y

dτ2

Now we turn to the right hand side of equation (43). The n-
th component of X stands for y. What is tr ? It is dXr/dS,
because we are on a geodesic. And dS is idτ . So equation
(43) becomes

d2y

dτ2
= −Γymr

dXr

dτ

dXm

dτ
(45)

Since m and r each run over four coordinates 9 , the right
hand side has a whole bunch of terms – ten of them to

9. To be consistent with standard notations in relativity, it would
be better to use µ and ν. We leave to the reader to make the change
in these dummy variables.

52



be precise because the gammas are symmetric in m and r.
Fortunately most of them are extremely small as long as
the elevator is moving slowly, and as long as the movement
of the object we are interested in, namely the particle with
coordinate y, is slow. Under these conditions, only one of
the combinations Γymr

dXr

dτ
dXm

dτ is significant.

What is the value of dt/dτ for slow motion ? It is essentially
1, because time and proper time in that case are almost the
same.

On the right hand side of equation (45) the differential ele-
ments are the components of the 4-velocity of the particle.
We just saw that dX0

dτ is essentially 1. What are the deri-
vatives of the space components with respect to τ ? They
are proportional to their actual ordinary spatial velocity.
We are assuming the spatial velocity is small compared to
the speed of light so the only important contribution on
the right hand side of (45) comes when r and m are time
indices. Let’s use t instead of 0 for the time index. Equation
(45) reduces to

d2y

dτ2
= −Γytt (46)

The right hand side must be the gravitational force. It must
be the derivative of the gravitational potential energy.

Let’s go back to the expression of the Christoffel symbols
in terms of the metric

Γprs =
1

2
gpn

[
∂gnr
∂Xs

+
∂gns
∂Xr

− ∂grs
∂Xn

]
(47)

We need the one with two time covariant index and one
space contravariant index. The space index is y. Among
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the terms gyn, the only term which is not negligeable is gyy

and it is 1. Since Xt is just what we denote t and Xy is
what we denote y, we get

Γytt =
1

2

(
∂gyt
∂t

+
∂gyt
∂t
− ∂gtt

∂y

)

The terms ∂gyt
∂t and ∂gyt

∂t , which are equal, are both zero. So
finally

Γytt = −1

2

∂gtt
∂y

And equation (46) can be rewritten

d2y

dτ2
=

1

2

∂gtt
∂y

(48)

An equation like (48), where the second derivative of a spa-
tial variable y with respect to time is proportional to the
first derivative of some quantity with respect to y, reminds
us of an equation of motion with potential energy. Somehow
one half of gtt must be the opposite of a potential energy.
But we saw that : it is minus a potential energy withm = 1,
also called gravitational potential.

In equation (42), which we rewrite below,

dτ2 = (1 + 2gy)dt2 − dy2

gtt is the coefficient −(1 + 2gy) in the metric defining dS2,
which is the same as dτ2 with a minus sign. So one half
the derivative of gtt with respect to y is −g. Equation (48)
finally becomes

d2y

dτ2
= −g (49)
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That is the equation of motion of a particle in a uniform
gravitational field. We went through a rather complicated
derivation to reach it, but so doing we learned the following
points :

1. Space-time has a metric. In arbitrary coordinates, the
metric can have a fairly complicated structure. In uni-
formly accelerated coordinates, however, it is almost
the Minkowski metric, but with the extra term 2gy
in equation (42).

2. The equation of motion along a geodesic in space-time
– at least as long as things are going slowly, that is as
long as Newtonian approximation is valid 10 – is just
Newton’s equation in a uniform gravitational field.

Uniform gravitational field, constant acceleration... : it is
what we expected. But to do it properly, using the me-
tric, the Christoffel symbols, the geodesics and so forth, is
a fairly complicated procedure.

Einstein guessed it : the hypothesis that a particle moves
along a geodesic in space-time was his starting point, and
he went in the opposite direction. He knew about uniformly
accelerated coordinate systems, but he didn’t know about
Christoffel symbols. Somewhere along our own derivations
is where he started. And for a uniform acceleration – with
Newtonian approximation – the metric is simply given by
equation (42).

So we have come around full circle from the fist lesson where
we talked about accelerated elevators giving rise to gravita-
tion. We have shown that in the Minkowski-Einstein space-

10. This means setting the terms where c appears in the denomina-
tor to zero.
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time a uniformly accelerated reference frame does give rise
to an effective gravitational field.

But so far we haven’t gotten to real gravitational fields. The
gravitational field we got is not a real gravitational field be-
cause it really corresponds to a flat space.

If we were to take the metric of equation (42) and calculate
the curvature tensor it would be exactly zero, indicating
that there does exist coordinates where the metric has the
simple form dt2−dX2. So the gravitation that we are expe-
riencing is really exactly the gravitation due to an accele-
rated frame of reference, not due to real gravitating matter.

Now we can guess what the effect of real gravitating matter
would be. Instead of 2gy in equation (42), what is the gravi-
tational potential due to a gravitating object ? It is −G/y 11.

So we can expect, when we study the metric of a real gra-
vitational field, that we will have something like

dτ2 = (1− 2GM

y
) dt2 − dy2 (50)

where G is Newton’s constant, and M is the mass of the
gravitating object.

11. By convention, for a uniform gravitational field, the gravitatio-
nal potential is taken to be zero at ground level and increases to +∞
when the height increases, while for the radial field created by an ob-
ject, the gravitational potential is taken to be zero infinitely far away
and goes to −∞ when the radius goes to zero. That is why y is now
in the denominator, and there is a minus sign.
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Figure 18 : Gravitating object of mass M
and gravitational potential −G/y.

That is almost the Schwarzschild metric, but not quite. We
will work out what is the Schwarzschild metric of a gravi-
tating object.

Equation (50) will lead to a weird phenomenon. When y
is large, the term 2GM/y is small. That is good because
(1− 2GM/y) is positive. But something crazy happens at
the point where y is equal to 2GM . The coefficient in front
of dt2 becomes zero. That point y where the coefficient
changes sign is called the horizon of the black hole 12.

Real gravitational fields and the Schwarzschild metric will
be the subject of next chapter. We are not going to derive
the metric entirely from what we already know. To derive
it, we need fields equations. We haven’t discussed them yet,

12. For the Earth, supposing all its mass was almost point-like, the
horizon would be 9 millimeters.
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and we won’t do it until chapter 9.

So far we have only discussed geometry, flatness, curvature,
geodesics, etc. And in this chapter, when we finally arrived
at the space-time of relativity and its peculiar geometry, we
ended up with a little demonstration of how, in a uniformly
accelerated reference frame in space-time, movement along
a geodesic gives rise to Newton’s equation.

58


