
Lesson 5 :
Metric for a gravitational field

Notes from Prof. Susskind video lectures publicly available
on YouTube
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Space-like, time-like, and light-like intervals, and
light cones

Let’s begin with time-like, space-like, and light-like inter-
vals. For that we go back to special relativity to spell out
what that means.

Figure 1 : Space-time and Minkowski metric.

We have discussed the metric many times. We call it proper
time

dτ2 = dt2 − dx2 − dy2 − dz2 (1)

Sometimes we want to put in explicitely the speed of light.
It then becomes

dτ2 = dt2 − dx2

c2
− dy2

c2
− dz2

c2
(2)

The reason to introduce the speed of light is to keep track of
what is small and what is big under certain circumstances.
For example if we want to go to the non-relativistic limit,
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that is, the limit where everything is moving slowly, it is
good to put back c because it reminds us that it is much big-
ger than any other velocities in the problem. And it makes
it easy to see which terms can be neglected and which terms
cannot. So as before we will sometimes put it in and some-
times take it out depending on circumstances.

Let’s look at the sign of dτ2. Of course, when we look at
real numbers, their square is always positive. But dτ2 is
not defined as the square of a real number, it is defined by
equation (2). And it can be positive or negative, depending
on whether dx2 + dy2 + dz2 is smaller than dt2 or bigger
than dt2. Of course when we say dx2 + dy2 + dz2, we mean
(dx2 + dy2 + dz2)/c2.

If dτ2 > 0, then the little element dXm in figure 1 is said
to be time-like. It has more time than it has space so to
speak. Its vertical part is bigger that its horizontal part. Its
slope in figure 1 is greater than 45°.

Figure 2 : Time-like interval.

It can be described in terms of a light cone, figure 2. If we
represent two spatial coordinates x and y, in addition to
the time coordinate t, and a light cone whose center is at
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X, then it means the little vector dXm lies in the interior
of the cone.

It could also lie in the backward direction in the same pic-
ture, pointing to the past. In either case, it is called a time-
like interval.

Space-like is exactly the opposite of time-like. It corres-
ponds to dτ2 < 0, or equivalently dx2 + dy2 + dz2 greater
than dt2. In that case we usually define another quantity
dS2 which is just the negative of dτ2. By definition it is

dS2 = dx2 + dy2 + dz2 − dt2 (3)

It is the same object as dτ2 except for the minus sign. Space-
like vectors are those for which dS2 > 0. And if we represent
the cone at X as in figure 2, we get figure 3.

Figure 3 : Space-like interval.

Finally there are light-like vectors. They are those for which
both dτ2 = 0 and therefore dS2 = 0. Their slope, in the
standard diagram, is at 45°. They are trajectories of light-
rays, and they lie on the surface of the cone of figure 3.
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Those are the three kinds of vectors we can have.

Just for a moment consider what it would mean, if there
were two positive signs and two negative signs instead of
one positive sign and three negative signs in the definition
of the metric in equation (1). Somehow this would corres-
pond to two time directions. It doesn’t mean anything in
physics. There are never two time directions. There are al-
ways one time and three space. Can you imagine a world
with two times ? I can’t. Frankly I can’t. I cannot imagine
what it would mean to have two different time directions.
And we will simply take the view that that is not an op-
tion. There is always one time-like direction in the metric
of equation (1) and three space-like.

But that doesn’t mean that there is a unique direction
which is time-like. There are many time-like directions poin-
ting within the light cone of figure 2.

The invariant property, corresponding to the fact that at
any point there is one time and three space directions,
concerns the metric tensor. We can write the metric ten-
sor in the following expression

dτ2 = −gµν dXµ dXν (4)

The minus sign in front of gµν is a convention, so that dS2,
the square of the infinitesimal proper distance, is given by
the same expression but without the minus sign.

Let’s recall this important point about the proper time dτ ,
defined by equation (4) : it is the time recorded by a clock
accompanying the particle along its trajectory. In other
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words, it has a physical practical meaning which is often
useful to remember. Of course, as we know, for particles
going slowly – and by slowly we mean up to thousands of
miles per second – the proper time is essentially the same
as the standard time of the stationary observer in the sta-
tionary frame of figure 1. This is easily seen from equation
(2), because c is very big compared to ordinary velocity,
or to the spatial components of the 4-velocity. Go to the
volume 3 on special relativity, in the collection The Theo-
retical Minimum, if you need a brush up on these ideas.

Similarly, proper distance, dS, along the trajectory of a par-
ticle is distance measured by a meter stick carried along by
the particle.

In summary, proper distance,
√
dS2, really is a distance.

And proper time,
√
dτ2, really is a time. Let’s keep that in

mind.

Equation (3) is the definition of the metric with the coor-
dinates (t, x, y, z). It can always be written in terms of a
matrix. In this case it is the matrix η written below

ηµν =


−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 (5)

Remember that it is the analog in the Minkowski space of
the Kronecker delta, that is simply the unit matrix, in Eu-
clidean space.

The matrix η has obviously three positive eigenvalues and
one negative eigenvalue. And that is the invariant story.
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The story is not that there is only one time direction, but
that there is always only one negative eigenvalue in the me-
tric. In special relativity and in general relativity, that will
still be the case whatever the metric is and whatever the
coordinate system is. And since the metric, in general, de-
pends on the point in space-time where we look at it, this
invariance statement will be true at any point.

A metric which would have two negative eigenvalues or
three negative eigenvalues, would have more than one time.
And we just don’t even think about that. That is something
that physics does not seem to have made use of, several time
axes.

The concepts of time-like, space-like and light-like displa-
cements are not restricted to special relativity. They ap-
ply generally whatever the metric, and whatever the point
which we consider. In the preceding discussion, we were in
the flat space of special relativity, but the concepts apply
in general relativity where the space is intrinsically not flat.

Now we shall consider a metric more general than ηµν . We
consider gµν(X). At every point, that is, at every X, there
is a matrix. And the matrix must have one negative eigen-
value and three positive eigenvalues.

In other words, wherever you are – standing there – you
should experience a world with one time direction and three
space directions, or more exactly one negative eigenvalue
and three positive. That means that every point in space
has a light cone associated with it, figure 4. These light
cones can be tilted and change shape depending of the curvy
aspect of the coordinates at each point.
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Figure 4 : Light cone at each point.

But at each point the metric has three positive and only
one negative eigenvalue. And at each point there is the no-
tion of time-like displacement, space-like displacement and
light-like displacement.

So we have to make sure, when we write a metric, that it
does have this property of the right number of positive and
negative eigenvalues.

The property of having a certain number of eigenvalues po-
sitive and a certain number negative is called the signature
of the metric. What was the signature of the metric of ordi-
nary flat space ? Not ordinary space-time, just the page you
are reading. It is + +. The signature of Minkowski space in
special relativity with three spatial coordinates is −++ +.

When somebody gives us a metric, or wherever we get it
from – we might get it as a present in the mail, we might
calculate it from some equations of motion, from some field
equations – we should make sure that that metric has si-
gnature −+ + +. If it doesn’t, it means we did something
wrong. And not only should we have that signature at some
point, but we should have it at every point.
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Notice that the shape of the light cone, in particular its
angle of openness, is a pure coordinate issue, see figure 4
and figure 2. In particular, if in the standard Minkowski
metric and representation of figure 2, we chose units such
that the speed of light is not 1 but the huge number c, the
cone would be extremely flat, and the picture not very use-
ful.

So much on the signature of the metric. Let’s now move on
to the metric of a massive body, and more specifically of a
black hole. But first of all let’s revisit geodesics, deriving
them in another way.

Geodesics and Euler-Lagrange equations

We learned, in chapter 4, what is the definition of a geo-
desic. And we used the corresponding equation – equation
(19) of chapter 4 – in the example of a free particle in a
uniformly accelerated reference frame.

A geodesic is a curve whose tangent vector stays parallel to
itself all along the curve. In other words, it is a trajectory
where we always go straight.

In this chapter we are going to learn a different definition,
which in many ways is more useful. But let us first recall
the original definition,

d2Xm

dτ2
= −Γµσρ

dXσ

dτ

dXρ

dτ
(6)
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The left hand side is the derivative of the tangent vector
along some curve, which all along the curve should be equal
to the double sum involving Christoffel symbols of the right
hand side. That is the standard definition of a geodesic. But
remember that in chapter 4, we also mentioned another :
it is the analog of the definition of a geodesic in ordinary
space, that is, the shortest distance between two points. Or
better yet, it is the curve between two points whose length
is stationary.

So another way of writing equation (6) is to say that we
"extremelize" – or we make minimum – the length of the
curve between two points.

Let’s start with ordinary space, the page of this book, or a
curved version of the page with hills and valleys. We take
two points in the space and any curve between them. We
calculate the distance along the curve.

Figure 5 : Determination of a geodesic between A and B.
When the space is flat it is a straight line.
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Then we search for the curve which minimizes its length.

How to calculate it ? Let’s spell out the logic. We start, as we
said, with any curve C between A and B. There are plenty
of them shown in grey in figure 5. On the given curve C,
for each little segment on the curve, we have

dS2 = gmn(X) dXm dXn (7)

We are now in ordinary Riemannian space, not in space-
time. We will come back to space-time in a moment. Equa-
tion (7) can be rewritten

dS =
√
gmn(X) dXm dXn (8)

This is just Pythagoras theorem applied to a little segment
on curve C. Then we add them all up. This gives the dis-
tance along curve C in figure 5.

S =

∫
along curve C

√
gmn(X) dXm dXn (9)

Finally we look for the curve C which makes S minimum
or extremum. That’s the logic. And by now we are fami-
liar with the maths which implement this logic. We learned
them in classical mechanics, in volume 1 of the collection
The Theoretical Minimum. It is a problem in calculus of
variation, analogous to minimizing the action of a particle
along a trajectory.

In other words, we can think of equation (9) as expressing
the action of a particle moving from A to B along curve C.
Then the rule for calculating the geodesic is to "extreme-
lize" this quantity, or to make it stationary. The equation
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that tells us how to minimize a quantity like S in equation
(9) is called the Euler-Lagrange equation.

When you go from the principle of least action to the Euler-
Lagrange equation, the principle of least action turns into a
differential equation involving a lagrangian. Typically, when
rewritten as explicitely as possible, the Euler-Lagrange equa-
tion becomes an equation of the type F = ma.

Going from minimizing the quantity in equation (9) to
equation (6) is exactly that operation. In fact equation (6)
looks like equating an acceleration to some thing. And the
thing is a kind of force.

Now let’s come back to relativity and to our actual problem
of geodesic, where we are not concerned with ordinary dis-
tance but with proper time.

If we want to express the quantity to be minimized, which
involves proper time, we deal with almost exactly the same
expression as in equation (9) exept for a minus sign in front
of the metric. From equation (4) we get that the proper time
between point 1 and point 2 in space-time is given by

τ =

∫ 2

1

√
−gµν(X) dXµ dXν (10)

This is the expression that we will want to minimize.

Let’s suppose the expression defined by equation (10) really
corresponds to the motion of a particle that starts at the
space-time point 1 and ends at the space-time point 2, see
figure 6.
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Figure 6 : Trajectory of a particle : geodesic in space-time.

The action we are interested in depends on one more quan-
tity. It depends on the mass m of the particle. The actual
action then is

A = −m
∫ 2

1

√
−gµν(X) dXµ dXν (11)

This is a definition of the mass. We will find out that put-
ting a coefficient called mass here is important for thinking
about energy and so forth. And the minus sign is strictly a
convention in the definition of mass. We want to make this
action A stationary.

What do we do with the right hand side of equation (11) ?
A priori it is a completely unrecognizable object to work
on with our mathematical toolbox. Okay, it is an integral.
That is, it is just a sum of infinitely many infinitely small
elements. 1 But where is the differential element ? What is

1. Mathematically speaking, it is more precisely defined as the
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the variable to integrate over ? Etc.

Usually for us an integral which we know how to calculate,
or at least manipulate, has the form∫

F ( some variable ) d some variable

where the variable may be some spatial quantity or may
be time, or some other clearly identified physical quantity.
Normally we don’t see integrals where beneath the integral
there is a square root, and inside the square root there is a
product of differentials like dXµ dXν .

Remember that we already met the same kind of integral
in volume 3 on special relativity. We are going to solve it in
the same way, introducing dt inside the integral, and even
the square root, to arrive at a more familiar expression.

Figure 7 : Breaking the trajectory into little time segments.

limit, when the number N of elements goes to infinity and the sizes
of the elements go to zero, of finite sums of N elements of the form
f(un)∆un. Such a definition is also due to Riemann.
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To start with, let’s break up the trajectory of the particle
into little time segments ∆t, figure 7. Let’s skip the finicky
maths and make them directly dt, because, after a good
basic course on calculus, we know that in our circumstances
it is allowed. Equation (11) becomes

A = −m
∫ 2

1

√
−gµν(X)

dXµ

dt

dXν

dt
dt2 (12)

Some of the differentials dXµ are in fact dt, because t is
one of the four coordinates in Xµ = (t, x, y, z). What
happens when we have dt/dt ? That is just 1. And what
happens when we have dx/dt or the analog with y or z ? It
is just the ordinary velocity. We can also pull the dt2 out of
the square root, and obtain a standard differential element
dt under the integral sign :

A = −m
∫ 2

1

√
−gµν(X)

dXµ

dt

dXν

dt
dt (13)

At each time t, the quantity
√
−gµν(X) dXµ

dt
dXν

dt , which is
integrated over time, has a definite value along the trajec-
tory. It is a certain function of the velocity and the posi-
tion X. So we have transformed our expression (11) for the
action into a conventional integral over time along the tra-
jectory in figure 7.

The integrand in equation (13) is the lagrangian. It is the
quantity which, in the calculation of a geodesic, plays exactly
the same role as the lagrangian when we apply the prin-
ciple of least action to calculate the trajectory of a particle
in classical non-relativistic physics. Action by definition is
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equal to the integral of the lagrangian, which is itself a
function of velocities and positions.

A =

∫
L(Ẋ, X) dt (14)

In summary, with our problem of making stationary the
action given by equation (13), we return to a problem that
we already met in classical mechanics, in volume 1 of the
collection The Theoretical Minimum. How to calculate an
equation of motion from an action ? In order to do that we
solve the Euler-Lagrange equation (or equations) that the
lagrangian must satisfy.

In our present problem, the lagrangian is

L = −m
√
−gµν(X)

dXµ

dt

dXν

dt
(15)

Incidentally, is the quantity inside the square root posi-
tive ? 2 Can we take its square root, even though there is
a minus sign in front of gµν ? Answer : yes, it is positive.
The quantity −gµν(X) dXµ dXν is the square of the pro-
per time over a small element dX along the trajectory, see
equation (1). It is always positive for a time-like trajectory.
And particles always move on time-like trajectories. Real
particles do not move faster than the speed of light.

In case the reader missed it, a space-like trajectory is
one where the point moves faster than the speed of light.

2. Remember that when we deal with actions and lagrangians we
are dealing with real quantities, for which the notion of maximizing
or minimizing has a meaning. This would not be the case if we were
dealing with complex numbers.
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Let’s recall what the Euler-Lagrange equations, that the
lagrangian must satisfy, are. First of all we are going to
partially differentiate L with respect to each of the variables
Ẋµ.

But the first of these variables, which is the derivative
of time with respect to time, is just one. So there is no cor-
reponding equation. We are only concerned with the three
partial derivatives of L with respect to the components of
ordinary velocity.

On the left hand side, for each of these partial deri-
vatives, we take the derivative with respect to time, and
equate it to the partial derivative of L with respect to the
corresponding component of position.

Therefore the Euler-Lagrange equations are the three
following equations

d

dt

∂L
∂Ẋm

=
∂L
∂Xm

(16)

where m runs from 1 to 3. We learned them in classical
mechanics.

The point is : if you know the metric gµν(X), you can work
out from equation (16) an equation of motion for the par-
ticle. And the particle’s motion will be a geodesic in the
sense of the trajectory with shortest proper time integrated
along the curve.

How does this relate to the definition of a geodesic given
by equation (6) ? Answer : if you work out exactly equation
(16) with the given metric gµν(X), you will discover that
you end up exactly with equation (6).
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Exercise 1 : Given the metric gµν(X), show that
the Euler-Lagrange equations (16), to minimize
the proper time along a trajectory in space-time,

d

dt

∂L
∂Ẋm

=
∂L
∂Xm

where L is given by equation (15), are equivalent
to the definition of a geodesic given by equations
(6), which say that the tangent vector to the
trajectory in space-time stays constant,

d2Xm

dτ2
= −Γµσρ

dXσ

dτ

dXρ

dτ

It is generally true that to work with the action defined by
equation (13), and with the Euler-Lagrange equations (16)
that come from minimizing this action, is much easier than
to work with a geodesic defined by equations (6).

We are going to do it in this lesson. We are going to work
out some equations of motion for particles in a particular
metric. The metric will be everybody’s favorite metric : the
Schwarzschild metric.
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Schwarzschild metric

We now come to the problem of studying the metric and
the motion of a particle in a real gravitational field, the
gravitational field of the Sun, the Earth or a black hole or
whatever you have, in other words a massive spherically
symmetric object.

Figure 8 : Massive object and its gravitational field.

We are outside the mass of the object, far away from it,
figure 8. And we are interested in the metric of space in
there. So first of all we are going to write a formula for the
metric and then we will check and see that this formula
really does make sense.

By that we mean that, using the equations of motion
(16), it would give rise to something that looks very fami-
liar, namely Newton’s equations for a particle moving in a
gravitational field – at least when we are far away from the
gravitating object, where the gravitation is fairly weak.

Here is the metric we are going to use. First of all if we were
in a flat space, it would have the form

τ2 = dt2 − 1

c2
dX2 (17)
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where henceforth dX2 stands for dx2+dy2+dz2. We expect
indeed, as we go far away from the gravitating object, that
the space-time there look flat.

But we know that the gravitating object does something to
space-time. So equation (17) should not be quite right for
the metric of the space-time created by the object. It should
be right only in the limit when we are far away. Therefore
we add a coefficient in front of dt2, and we leave the part
with dX2 as it is.

τ2 =

(
1 +

2U(X)

c2

)
dt2 − 1

c2
dX2 (18)

U(X) is the gravitational potential due to the object in fi-
gure 8.

Let’s check that, as long as our particle is moving slowly, its
geodesic equation, in the lagrangian form (16), just becomes
Newton’s equation for a particle moving in a gravitational
potential U(X).

The general form of the lagrangian is given by equation
(15), where inside the square root is just dτ2. Now that
we know the metric, from equation (18), we can write the
lagrangian or the action more explicitely

A = −mc2
∫ √(

1 +
2U(X)

c2

)
dt2 − 1

c2
dX2

dt2
dt2 (19)

Noting that dX2

dt2
is Ẋ2, and doing a bit of cleaning, this is

the same as

A = −mc2
∫ √(

1 +
2U(X)

c2

)
− Ẋ2

c2
dt (20)
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When we work with c explicitely present in the formulas,
the expression for the action must carry a c2 next to the
mass. We are familiar with that. It can be derived from
reasoning on dimensions, or we can remember that the ac-
tion has units of energy multiplied by time. Recall the most
basic action in classical mechanics : A =

∫
1
2mv

2dt.

We could work with the lagrangian, in equation (20), as
it is, but what we are interested in is what happens when
we move with slow speed relative to the speed of light. So
the next step is to approximate the lagrangian, and look
at the Euler-Lagrange equations with the approximate la-
grangian 3.

We are interested in slow motion because we want to show
that equation (20) really does give rise to Newton’s equa-
tions in the non-relativistic limit. The non-relativistic limit
is the one where c is taken to be very large.

We could be tempted to just erase anything with a 1/c2

beneath the integral sign, but – boy ! – this would kill just
about everything in equation (20).

Inside the square root we can reorgonize terms as one plus
a small quantity : √

1 +
1

c2

(
2U − Ẋ2

)
(21)

3. As usual, we rely on the mathematical fact that, in this case, it is
okay to approximate the lagrangian first and then to solve the Euler-
Lagrange equations rather than solve properly the Euler-Lagrange
equations first and then look at the limit case when Ẋ is small. In
other words, we can invert two big operations.
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Next we use the binomial theorem :
√

1 + ε ≈ 1 +
ε

2

So expression (21) can be approximated by

1 +
1

2c2

(
2U − Ẋ2

)
(22)

Going back to the expression of the action, in equation (20),
we obtain

A =

∫ (
−mc2 −mU +

m

2
Ẋ2
)
dt (23)

Inside the integral, we have the lagrangian when the speed
of the particle is small, that is, when we can make a non-
relativistic approximation.

If we use this lagrangian in the Euler-Lagrange equations,
the constant term −mc2 has no effect. The only thing we
do with a lagrangian is differentiate it. When we differen-
tiate a constant we get zero. So we can disregard that term.

The other two terms in the lagrangian are a conventional
kinetic energy, m

2 Ẋ
2, minus a potential energy, mU(X),

which actually depends on X. For the potential energy we
get to choose the function we like. Incidentally in a gravita-
tional problem the potential energy of a particle is always
proportional to its mass.

Finally, when we use this lagrangian, the Euler-Lagrange
equations will of course simply produce Newton’s equation
for a particle in a gravitational field U(X), just as they did
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with exactly the same calculations in classical mechanics.

The equation will be

mẌ = −m∂U

∂X
(24)

The term on the right hand side is a force. On the left hand
side is an acceleration multiplied by the mass. And the mass
cancels.

The main point here was that the action given by equation
(13), which is equivalent to the geodesic given by equa-
tion (6), is easily worked out just by thinking of the Euler-
Lagrange equations.

And it is even easier to work out if you are in the non-
relativistic limit, where you just say c is very large, 1/c2 is
very small, and just expand the square root in the expres-
sion of the action.

But the important point that we learned in doing the above
calculation is that in some first approximation – or perhaps
no approximation – we can write

−g00 =

(
1 +

2U(X)

c2

)
(25)

Of course in the equation (18) we wrote for τ2, there could
be even smaller terms than 1/c2, terms in 1/c4 or 1/c6, etc.
But they would not be important for in non-relativistic li-
mit.

So we cannot say with complete confidence that −g00 is one
plus twice the potential energy of a particle divided by c2.
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But we can say that it must be true to the first order in
small quantities – small quantities meaning quantities with
one over c2.

Now for the gravitational potential energy created in space
by a body of mass M , see figure 8, we shall use

U(X) = −MG

r
(26)

where G is Newton’s constant, and r is the distance away
for the center of the body.

Now we can write down our first guess at the metric of
space-time surrounding a gravitational mass in figure 8.
Here it is :

dτ2 =

(
1− 2MG

c2 r

)
dt2 − 1

c2
(dx2 + dy2 + dz2) + ... (27)

where r =
√
dx2 + dy2 + dz2. And the ... after the spatial

terms stand for smaller things, that is things one or more
orders of magnitude smaller than 1/c2.

Is that beginning to look familiar ? Readers who have some
familiarity with cosmology may recognize the Schwarzschild
metric, o the metric of a black hole – but not quite.

Next, let’s consider the term

dx2 + dy2 + dz2 (28)

It is the ordinary metric of three-dimensional space. In
equation (27) defining the metric of space-time created by a
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massive body, only the time-time component of the metric
has been fiddled with. The space-space components of the
metric and everything else have not yet been fiddled with.
They will in a moment but not too much.

The space-space components in equation (27) are the me-
tric of the ordinary flat space. Let’s take flat space in three
dimensional polar coordinates. These coordinates are cha-
racterized by a radius, namely the distance from the center
of the Sun – if we think of the body in figure 8 as the Sun
–, and a pair of angles. They can be a polar angle and an
azimuthal angle.

Figure 9 : Spherical polar coordinates.

r is the distance from the Sun O, to P . The angle φ can
be taken from the pole or from the equator. We choose to
measure it from the equator. It is also called the latitude.
And φ, the azimuthal angle, is also called the longitude.

How is the ordinary 3D Euclidean metric dx2 + dy2 + dz2

expressed in spherical polar coordinates ? The formula, that
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you may have learned in trigonometry at the end of high
school, is

dx2 + dy2 + dz2 = dr2 + r2 (dθ2 + cos2θ dφ2) (29)

Despite its complicated look, it is simply the square of
the length element on the surface of the sphere, r2 (dθ2 +
cos2θ dφ2) that we have already met, to which is added dr2

to complete Pythagoras theorem in three dimensions.

Why are we considering polar coordinates ? Answer : sim-
ply because polar coordinates are the good coordinates for
studying the central force problem. We don’t want to use x,
y and z to study the motion of a particle in a gravitational
field. We want to use the polar coordinates. So we are going
to write the metric given by equation (27) in terms of polar
coordinates.

We are going to make one change : we will give dθ2 +
cos2θ dφ2 a name, so we don’t have to write it over and
over. We call it dΩ2. There is no other reason than to avoid
writing it all the time in its full expression with θ and φ.
Equation (27) can be rewritten

dτ2 =

(
1− 2MG

c2 r

)
dt2 − 1

c2
dr2 − 1

c2
r2 dΩ2 + ... (30)

The variable r is just the radial distance. And dΩ2 is the
metric on the surface of a sphere. If you keep r fixed, the
term r2 dΩ2 is the contribution to the space-time metric
when you move some angles θ and φ on the sphere.

Now if we look at this metric, given by equations (30) or
(27), there is something terribly wrong. It is fine when we
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are far away. But there is something deeply wrong when we
get close to the center.

What happens when r becomes very small ? At some point
2MG/c2r becomes bigger than one, and the coefficient(

1− 2MG/c2r
)

becomes negative. In other words, the time-time part of the
square of the proper time dτ , the coefficient −g00, becomes
negative.

Since the other terms – the space-space parts – in the de-
finition of dτ2 given by equations (30) or (27) are also ne-
gative, we run into a problem. The metric tensor or matrix
gµν(X) then only has positive terms on its diagonal (and
the terms off diagonal are all zero). Therefore it has four
positive eigenvalues instead of one negative eigenvalue and
three positive eigenvalues.

Where does the problem arise ? It arises when
(
1− 2MG/c2r

)
changes sign, that is when

r ≥ 2MG

c2
(31)

The quantity 2MG/c2 is just some positive number, speci-
fic of the body we are looking at in figure 8. And the metric
no longer has three positive eigenvalues and one negative.

Of course this happens if all the mass of the body is some-
how point-like or almost point-like 4. This leads us to the
topic of black holes.

4. As the reader knows, if we enter inside the Earth, we will only
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Black holes

A black hole is a massive body whose mass M is extremely
concentrated in a very small sphere. It is concentrated in a
sphere of radius smaller than the value 2MG/c2 which we
discovered to be causing a problem in the metric.

2MG/c2 is a distance characteristic of the black hole. It is
called the Schwarzschild radius of the black hole.

When we get closer and closer to the black hole, at some
point, when we cross the Schwarzschild radius, the coeffi-
cient −g00 changes sign and becomes negative, or equiva-
lently g00 becomes positive, and the whole metric of equa-
tion (30) now has four positive eigenvalues.

The meaning of that is we somehow passed into a region
where there are four space directions and no time direction.
That is bad ! That is something we don’t want. It is not a
good thing.

What really happens ? When we study the field equations
of general relativity – which we are going to do – we will
discover really what happens. For the time being let me
just say that at the point where

(
1− 2MG/c2r

)
changes

sign, the rest of equation (30) will also change. We will put
an extra coefficient in front of the term dr2/c2 in equation
(30) to the effect that when the time-time component of
the tensor changes sign, the r-r component will also change
sign.

be submitted to the gravitational field created by the mass at radius
shorter than where we are, the mass farther away than us, all around
the Earth, will play no role.
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So what happens ? The term
(
1− 2MG/c2r

)
dt2 turns into

a space direction, but the term with dr2 turns into a time
direction. The signature of the metric is maintained : one
time-like direction and three space-like directions.

What can we put, in equation (30), in front of the dr2/c2

to make it flip sign, when the time-time component flips
sign ? Well, we could also put in

(
1− 2MG/c2r

)
in front of

the dr2/c2. So if we cross the Schwarzschild radius the first
term changes sign and the dr2 term changes signs too. But
that turns out not to be quite the right thing.

Einstein’s field equations give us a different answer. Instead
of using the same coefficient as in front of dt2, use its in-
verse. From now on disregarding the smaller terms in 1/c4

or more, the metric becomes

dτ2 =

(
1− 2MG

c2 r

)
dt2 −

(
1

1− 2MG
c2 r

)
1

c2
dr2 − 1

c2
r2 dΩ2

(32)

When we cross the Schwarzschild radius we do have both
coefficients changing sign at the same time. Therefore the
signature −+++ of the metric is preserved. But something
very odd happens : the thing that we are calling t becomes
a space-like direction, and the thing that were calling r be-
comes a time-like direction. They flip.

This is not easy to visualize but I will give you the tools
to visualize it as we go along. Something happens as we
cross a certain threshold – the surface of a sphere of radius
r equals 2MG/c2. The radius r becomes a time variable,
and the time t becomes a space variable. This is completely
mysterious for the moment, but we will explain in some
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geometric detail what is happening at the Schwarzschild
radius.

We will discover that, when we are moving radially toward
the black hole, to cross the Schwarzschild radius takes an
infinite amount of coordinate time t but a finite amount
of proper time τ . In other words, somebody falling, with
a wristwatch, will say it takes him or her a finite amount
of time to cross that threshold. But somebody, watching
from the outside that person fall through, will say it takes
an infinite amount of time. That is a characteristic of the
metric given by equation (32). And that is one of the things
we want to work out in this lesson.

Event horizon of a black hole

Let’s think about where is happening this peculiar pheno-
menon of time and space switch. It is happening at coor-
dinate r = 2MG/c2. The speed of light c is a huge num-
ber, and its square is in the denominator. So it is a very
small distance, but only if M itself is not huge because the
Schwarzschild radius depends on the mass of the gravita-
ting object. For the Earth, if its mass were concentrated in
a smaller distance than that, this distance would be about
a centimeter.

When we cross the Schwarzschild radius, the reader may
wonder what happens to the wristwatch. Does it begin to
record spatial distance ? Answer : no. It keeps ticking in a
time direction. Clocks don’t care about what coordinates
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we use.

We are going to discover that the phenomenon of time and
space switch is an artifact of our coordinate system. There
is nothing special going on at the Schwarzschild radius. We
will see that (t, r, θ, φ) are just awkward coordinates
that make it look like something funny is happening at
r = 2GM/c2.

In truth there is nothing funny happening at the Schwarz-
schild radius. We are going to work out and see exactly
why. But for the moment it does look like there is some-
thing going on there. Looking at the metric tensor expres-
sed in the coordinates (t, r, θ, φ), when the gtt coefficient
vanishes, the grr coefficient becomes infinite. It looks like
some terrible things happen to the geometry.

But in fact the geometry is completely smooth over the
threshold r = 2GM/c2. There is nothing special happening.
The light cones are perfectly healthy all over the region
around the Schwarzschild radius. There is nothing special
going on. But we have to work harder to see it.

Here is some historical note. Einstein submitted his field
equations to the Prussian Academy of Science on Novem-
ber, 25 1915. Then Schwarzschild 5 studied Einstein’s paper
and, in December 1915, while fighting on the Russian front
during WWI, wrote down equation (32) for the metric of a
gravitating body (outside the body). He unfortunately died
shortly afterwards. What did Einstein already know of it ?
He knew about the first term in front of dt2 and he knew

5. Karl Siegmund Schwarzschild (1873-1916), German astrophysi-
cist.
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part of the second term in front of dr2 in equation (32).

To understand what we mean, let’s examine this second
term when r is not too small, that is when 2MG/c2r is
small. Using our favorite tool to make approximations –
the binomial theorem –, the coefficient in front of dr2, in
equation (32), can be expanded as follows

1

1− 2MG
c2 r

= 1 +
2MG

c2 r
+

(
2MG

c2 r

)2

+ ... (33)

On the right hand side the first term after 1 has 1/c2, the
second term 1/c4, etc. In other words, what we are doing,
in equation (32), is correcting the dr2/c2 of equation (30)
with corrections that are very small – of the order of ma-
gnitude of 1/c4 or smaller. They contribute to the motion
of the particles, but not in the non-relativistic limit.

Let’s close this historical note, and come back to the me-
tric of equation (32). Before we analyze it and see what is
going on at a point where we cross the horizon of the black
hole – another name for the surrounding sphere of Schwarz-
schild radius –, let’s use it and see if we can figure out how
particles move in the presence of this metric, not in the non-
relativistic limit but without taking any approximation. It
is not that hard.

By the way, if we are not going to do any approximation,
we might as well set c equal to one. It is just a choice of
units. Then the metric looks like this

dτ2 =

(
1− 2MG

r

)
dt2 −

(
1

1− 2MG
r

)
dr2 − r2dΩ2 (34)
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Two kinds of trajectories are easy to study : circular orbits
– they reserve some surprise if you do them –, and radial
trajectories. In this lesson, let’s study a radial trajectory, a
spacecraft falling along a straight line and a priori going to
crash on the black hole.

Figure 10 : Radial trajectory of a spacecraft
falling toward the black hole.

The question is : how long does it take for the spacecraft to
reach the horizon ? We are going to measure this duration
from two points of view : that of an external observer, using
coordinate time t, and that of an astronaut in the space-
craft, using the proper time τ of the spacecraft and himself.
The results are very different.

The main point of these calculations is to show you how to
work with the metric of equation (34).

When you have to do any such calculation, you always start
with the lagrangian for the particle. Then you work out
the Euler-Lagrange equations or whatever you need to do
with the lagrangian. And you solve the equations. There
are tricks you can do. I’m going to show you some of the
tricks that allow you to do the problem.
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So we go back to the lagrangian for the in-falling particle.
Remember that particles follow geodesics in space-time, so,
from equation (11), the lagrangian is just −m

√
dτ2. We get

dτ2 from equation (34). Assuming that the spacecraft goes
straight and that Ω doesn’t change, we can omit the term
r2dΩ2. Therefore the action, that must be stationary, is

A = −m
∫ √√√√(1− 2MG

r

)
dt2 −

(
1

1− 2MG
r

)
dr2

As usual, to make sense out of this integral, below the in-
tegral sign we divide inside the square root by dt2, and
multiply outside the square root by dt.

A = −m
∫ √√√√(1− 2MG

r

)
−

(
1

1− 2MG
r

)
dr2

dt2
dt

The ratio dr2/dt2 is just the radial velocity squared, that
is ṙ2. So we got our lagrangian

L = −m

√√√√(1− 2MG

r

)
−

(
1

1− 2MG
r

)
ṙ2 (35)

The coordinate in this case is r. And this is L(ṙ, r).

Fortunately applying the Euler-Lagrange equations to com-
pute the trajectory is easy. Or at least it is easy to see what
is happening at the Schwarzschild radius. Let’s not worry
about the exact solutions. Exactly solving the problem is a
little bit hard. But seeing what happens is easy.
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There is always a conserved quantity. What is the conser-
ved quantity that is always there ? Energy.

What is energy in terms of the lagrangian ? Remember from
volume 1, chapter 6, of the collection The Theoretical Mi-
nimum, on the least action principle :

the energy is the hamiltonian.

And the hamiltonian is expressed in terms of the lagrangian.

To compute the hamiltonian, the first thing we do is calcu-
late the generalized conjugate momentum to r. It is

p =
∂L
∂ṙ

In the general case, when instead of one coordinate r we
have a collection of coordinates qi and their conjugates pi,
the general formula for the hamiltonian is 6 :

H =
∑
i

piq̇i − L

In our case it becomes simply

H = pṙ − L

The calculations are left to the reader. The result is

H =
m (1− 2MG/r)√

(1− 2MG/r)− ṙ/(1− 2MG/r)
(36)

6. It is equation (4) of chapter 8 of volume 1.
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It is a complicated ugly expression. But it is a definite thing.
What does it depend on ? It depends on the mass m of the
particle or spacecraft, the distance r to the black hole cen-
ter, and the velocity ṙ. It is the energy.

We know that this energy is conserved over time. We can
call it E instead of H, and it does not change with time.

Then equation (36), giving the energy, enables us to express
ṙ as a function of that energy E. With a little bit of algebra
we get

ṙ2 = (1− 2MG/r)2 − (1− 2MG/r)3

E2
(37)

This expression again looks unwieldy. But it doesn’t really
matter. What is important is that we can easily see what
happens when r gets near 2MG, that is, when the space-
craft gets close to the horizon of the black hole.

Equation (37) tells us that as r gets near 2MG, in other
words as the spacecraft approaches the horizon of the black
hole, its velocity slows down to zero. Contrary to intuition,
when the spacecraft falls towards the Schwarzschild radius,
instead of accelerating, its velocity gets smaller and smaller.

Exercise 2 : Show that from equation (36) for
the energy, and equation (37) for ṙ2, it follows
that

ṙ ≈
√
r − 2MG

2MG
(38)
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Equation (38) offers another way to see that as r approaches
2MG the spacecraft decelerates. It is a surprise because we
might think that the thing would accelerate like, in elemen-
tary physics, would do a particle falling toward a massive
body. But instead it slows down 7.

The speed gets asymptotically to zero, and the spacecraft
or particle itself never passes the Schwarzschild radius. You
might say figuratively that it takes forever to reach the ho-
rizon.

Let’s go back to the Schwarzschild metric given by equation
(34). Let’s write it again below leaving aside the dΩ2 piece
which does not play any role

dτ2 =

(
1− 2MG

r

)
dt2 −

(
1

1− 2MG
r

)
dr2 (39)

How does a radial light-ray move ? Think of a light-ray bea-
med from some point either toward the center of the black
hole or moving away, it doesn’t matter for our analysis : it
moves radially.

7. Notice that we still are in classical physics in the sense of not
quantum. The only special things from elementary physics are

1. particles move along geodesics in space-time
2. we look at a massive body whose mass is extremely concentra-

ted
3. we look at what happens at the Schwarzschild radius, which is

ordinarily very small (recall that it is 2MG/c2)
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Figure 11 : Radial light-ray beamed from r in each direction.

The trajectory of the light-ray is a solution to equation (38)
that says that it is light-like. Light-like means that dτ2 = 0.
So a light-ray satisfies(

1− 2MG

r

)2

dt2 = dr2

or equivalently

dr

dt
= ±

(
1− 2MG

r

)
(40)

That is a light-ray. It is the fastest thing that can ever be.
When r is big the right hand side of equation (40) is almost
1, that is the speed of light in our units. So there is nothing
troublesome there. But as r decreases to the Schwarzschild
radius, we see that the magnitude of the radial velocity,
which is (r − 2MG)/r, goes to zero.

In other words, even a light-ray somehow gets stuck as it
approaches the black hole horizon !

Is it moving with the speed of light ? Answer : Of course it
is moving with the speed of light. What else can a light-ray
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do ? But the speed of light has this property that in the
particular set of coordinates (t, r, θ, φ), the speed of light
measured by dr/dt goes to zero as you get closer and closer
to the Schwarzschild radius. Therefore nothing even inclu-
ding a light-ray can get past the surface of the horizon... or
so it seems.

The velocity goes to zero at the horizon, whether we are
incoming or outgoing. So wherever we are, something odd
happens beyond the horizon. And we are going to work that
out.

Now let’s turn to someone moving with the spacecraft of
figure 10, or with a photon of figure 11. From the point of
view of a person falling in, time is the proper time τ . He or
she will just go sailing right through the Schwarzschild ra-
dius. The phenomenon of dr/dt going to zero is an artifact
at r = 2MG/c2 of the peculiar spherical polar coordinates
used for the stationary frame. There is nothing really going
on that is strange at that distance. And the person will
reach the black hole in a finite amount of proper time.

We will see this phenomenon in more details in chapter 6.
In particular we will see the relation between stationary
time t and proper time τ . Equation (39) shows that when r
approaches the Schwarzschild distance, the coefficient (1−
2MG/r) goes to zero. When the coefficient is going to zero,
a given amount of dt corresponds to a smaller and smaller
amount of proper time dτ . As a consequence, proper time in
some sense "slows down". That is why something can take
an infinite amount of time in one frame (the frame where
time is t), and a finite amount of time in the other frame
(the frame where time is τ).
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One last point that we should emphasize is that if we were
really talking about the Sun or the Earth, these bodies are
not compact enough to be black holes. A black hole is a
body whose mass is contained within its Schwarzschild ra-
dius. The figure is about 3 kilometers for the Sun, and about
9 millimeters for the Earth. However the Earth radius is
6000 kilometers.

Equation (34) for the metric, or equation (37) for ṙ are
only valid outside the gravitating body itself. It is only if
the Earth somehow would collapse within a radius of 9 mil-
limeters, keeping its mass, that there would be a Schwarz-
schild radius to speak about, leading to dr/dt going to zero
and so forth. Same thing for the Sun : only if it collapsed
within a sphere less than 3 kilometers in radius would it
have a black hole horizon.

Inside the gravitating body, the metric is different from
equation (34). And nothing bizarre happens in the center
of the Earth. The center of the Earth does not have a black
hole horizon.

To have the complete metric in space-time created by a gra-
vitating body you have to piece together the metric outside
and the metric inside the body.

Black holes do have peculiarities. But they are somewhat
different from what popular science says. For example, in
popular science, it is said that we can throw things – tis-
sues, cars, planets, anything – into a black hole, and make
it grow. But I showed you that these things thrown at the
black hole will never get there. So there is a problem.
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Next chapter will be devoted to deepening our knowledge
of black holes.
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