Lesson 4 : Théorie classique des champs

C’est I’époque de la Série mondiale de baseball, et la Ta-
verne d’Hermann est bondée avec les fans que viennent re-
garder les matchs. Art, qui arrive en retard, approche un
tabouret a c6té de Lenny.

Art : « Quels sont les noms des types dans le grand champ 7 »

Lenny : « Qui est dans un champ classique; et qu’est-ce
qu’il y a dans un champ quantique ? »

Art : « Arréte de me chambrer, Lenny, je pose simplement
la question. Qui est dans un champ quantique 7 »

Lenny : « Qui est dans un champ classique. »

Art : « C’est ce que je demande. OK. Que sait-on aussi du
champ électrique 7 »

Lenny : « Tu veux connaitre le nom du gars dans le champ
électrique 7 »

Art : « Naturellement. »

Lenny : « Naturellement 7 Ah non. Naturellement est dans
un champ magnétique. »



Jusqu’ici nous nous sommes concentrés sur le mouvement
relativiste des particules. Dans cette lecon, nous allons abor-
der la théorie des champs — pas la théorie quantique des
champs, mais la théorie classique relativiste des champs. 1l
pourra y avoir des points de contacts occasionnels avec la
mécanique quantique; je les signalerai alors. Mais nous nous
occuperons avant tout de la théorie classique des champs.

La théorie des champs que vous connaissez probable-
ment le mieux est 1’électromagnétisme : les ondes électro-
magnétiques et leur interaction avec les particules char-
gées électriquement. L’électromagnétisme fait intervenir un
champ électrique et un champ magnétique.

Mais tout d’abord qu’est-ce qu’un champ ?

4.1 Champs et espace-temps

Un champ n’est rien d’autre qu’une fonction d’un ensemble
vers un autre

f: E—=F

Toutefois comme ’ensemble de départ E qu’on considére a
généralement des caractéristiques de nature spatiale — c’est-
a~dire une géométrie intéressante —, 'usage est de parler non
pas de fonction mais de champ. Nous appellerons aussi ’en-
semble de départ [’espace sous-jacent. Si ’ensemble d’arri-
vée I est un espace vectoriel, on parle de champ vectoriel.
Si ’ensemble d’arrivée est I’ensemble des nombres réels on
parle de champ scalaire.

La lettre consacrée pour un champ scalaire est ¢ (la
lettre grecque phi). Et pour un champ vectoriel on utilisera
une lettre majuscule latine comme P ou grecque comme =
(la lettre grecque majuscule ksi).

En physique I'espace sous-jacent est le plus souvent un



espace-temps, parce qu’on s’intéresse généralement & la dy-
namique des systémes et pas seulement a leur statique. Il
aura plusieurs dimensions spatiales et une dimension tem-
porelle. Pour commencer & nourrir notre intuition, on peut
penser & ’espace-temps newtonien. Mais bien slr ce sera
bientot 'espace-temps de Minkowski. Les mathématiciens
et les physiciens théoriciens sont capables d’imaginer des
espaces-temps avec un nombre quelconque de dimensions
temporelles et un nombre quelconque de dimensions spa-
tiales. Mais dans le monde physique, méme les théories qui
ont 10, 11 ou 26 dimensions spatiales®, ont toujours une
seule dimension temporelle. Personne ne sait donner un sens
4 plus d’une dimension temporelle. Donc nous aurons une
dimension temporelle ¢ et un certain nombre de dimensions
spatiales X*.

Un champ est ainsi une fonction qui & chaque point
de 'espace-temps (t, X?) associe un élément d’un espace
vectoriel ou de ’ensemble des réels. En d’autres termes, &
chaque point spatial correspond un vecteur ou un scalaire,
qui lui-méme dépend du temps.

La météorologie fournit des exemples naturels. La vélo-
cité du vent mesurée en chaque point X* d’une région et a
chaque temps ¢ est un champ vectoriel La température est
un champ scalaire.

Quand on considére les coordonnées (¢, X*) des points
de l'espace-temps, il faut garder a l'esprit que les X’ ne
sont pas des degrés de liberté du systéme que 1’on regarde;
ce sont simplement des étiquettes attachées aux points de
I’espace sous-jacent. De méme les points de ’espace-temps
— ce qu’on a appelé des événements — sont étiquetés par

1. Des esprits facétieux ont dit qu’on ne va pas plus loin que 26
dimensions spatiales en théorie des cordes, parce qu’au dela il n’y a
plus de lettres disponibles.



(t, X%), ou lindice i va de 1 au nombre de dimensions
spatiales. Les degrés de liberté dans la théorie des champs
sont dans I’espace d’arrivée. En d’autres termes ce sont eux-
mémes des champs.

Nous allons commencer par considérer un champ scalaire
¢. A chaque point de I'espace-temps (¢, X?), le champ as-
socie le scalaire ¢(t, X*). Les mathématiciens notent cette
correspondance ainsi

¢ (t, X' — o(t, X7

Quand on travaille avec des champs il est possible d’étre
parfois un peu perdu entre I’ensemble de départ, dit encore
sous-jacent, et I’ensemble d’arrivée. Il est important de ne
pas les confondre. L’espace d’arrivée est les réels on un es-
pace vectoriel. L’espace sous-jacent est en général un espace
vectoriel. La figure 4.1 montre un champ scalaire de (t, x)
vers les nombres réels.

¢(t: I) t
A /

Y

Figure 4.1 : Champ scalaire ¢(¢, x).



L’ensemble de départ est le plan horizontal (¢, x), et 'en-
semble d’arrivée est ’axe vertical unidimensionnel représen-
tant les réels. Le champ est donc représenté par une nappe
ou une surface. A chaque point (t, z) correspond une hau-
teur sur la nappe.

On peut aussi représenter graphiquement des champs
vectoriels, mais le dessin est un peu plus compliqué (cf.
Volume 1, figure 2 du chapitre 9, sur le théoréme de Gibbs-
Liouville, ou est représenté un champ de vélocités).

Il est habituel en théorie des champs de dire que 'es-
pace sous-jacent est de dimension (3 + 1), voulant dire par
la qu’il a trois dimensions spatiales et une dimension tem-
porelle. Plus généralement nous pourrons étre intéressés par
I’étude de champs sur des espaces-temps avec un nombre
plus grand de dimensions spatiales. Si I'espace-temps a d
dimensions spatiales, on parlera alors d’un espace-temps
de dimension (d + 1). Mais en théorie de la relativité 1’en-
semble de départ sera habituellement un espace-temps (3
+ 1), et Pensemble d’arrivée les nombres réels ou bien un
espace vectoriel.

4.2 Champs et action

Comme je I’ai dit, le principe de moindre action est 'un des
principes les plus fondamentaux de la physique. Il gouverne
toutes les lois connues de la physique. Sans lui nous n’au-
rions pas de raison de croire en la conservation de 1’énergie
ni méme en 'existence de solutions aux équations que nous
écrivons. Nous allons aussi fonder notre étude des champs
sur le principe d’action. Le principe d’action qui gouverne
le mouvement des champs est une généralisation de celui
qui gouverne le mouvement des particules. Notre plan est



d’examiner en paralléle le principe d’action appliqué aux
particules et celui appliqué aux champs, et de les com-
parer. Pour simplifier cette comparaison, nous allons tout
d’abord reformuler le principe d’action pour les particules
non-relativistes dans le langage des champs 2.

4.2.1 La trajectoire d’une particule vue
comme un champ

Je souhaite retourner briévement a la théorie des particules
non-relativistes, non pas que je sois particuliérement inté-
ressé par les particules qui vont lentement, mais parce que
les mathématiques ont des similarités avec la théorie des
champs. En fait, en un certain sens la trajectoire d’une
particule non-relativiste est un champ d’une variété trés
simple — un champ ot 'espace sous-jacent a seulement sa
dimension temporelle et n’a plus de dimensions spatiales.

La figure 4.2 montre la trajectoire d’'une particule comme
on la représente habituellement, avec en abscisse le temps,
et en ordonnée la position de la particule sur un axe.

La figure 4.2 peut aussi étre vue comme une partie de la fi-
gure 4.1 : lintersection de la nappe et du plan vertical formé
par l'azxe horizontal t et ’axe vertical sur lequel est repéré ¢.

En d’autres termes, la trajectoire d’une particule ¢(t) est
simplement un champ dont I’espace sous-jacent a été privé

2. Le professeur Susskind emploie parfois le terme traditionnel de
principe de moindre action et parfois celui de principe d’action. Il n’y
a pas de différence entre les deux. Mais le deuxiéme est plus correct
car le principe est en réalité de trouver une solution qui rende ’action
non pas minimale mais stationnaire.



de tous ses axes spatiaux X!, pour ne conserver que 'axe
temporel . Quant & I'espace d’arrivée c’est ici I’ensemble
des réels sur lequel la particule se déplace en fonction du
temps. Il s’agit donc d'un champ scalaire.

/..

Figure 4.2 : Trajectoire d’une particule vue comme un champ, ol

I’espace sous-jacent n’a plus de dimensions spatiales, seulement
la dimension temporelle ¢.

Les physiciens parlent parfois pour la théorie du mouvement
d’une particule de théorie des champs de dimension (0 + 1).

La figure 4.2 montre donc la trajectoire d’une particule
non-relativiste. Pour trouver cette trajectoire nous allons
utiliser le principe de moindre action.

Le lecteur ou la lectrice se souviennent que ’action est
définie comme l'intégrale d’un certain lagrangien £ en fonc-
tion du temps, depuis une date a jusqu’a une date b :

b
A:/ﬁdt

7



Notez pour plus tard — quand nous généraliserons & un es-
pace sous-jacent (£, X*) — que c’est l'intégrale sur 'espace
sous-jacent du champ qu’est la trajectoire de la particule.

Pour des particules non-relativistes, le lagrangien est
simple : c’est I'énergie cinétique moins 1’énergie potentielle.
L’énergie cinétique est ordinairement exprimée sous la forme
%va, mais avec notre nouvelle notation utilisant un champ
@(t), et non plus 'habituel z(¢) pour la position de la par-
ticule, nous allons utiliser (j), c’est-a-dire %, au lieu de v
pour la vélocité. Avec cette notation, I’énergie cinétique de-
vient %m¢2 Nous allons simplifier davantage en prenant
une masse m égale & 1. Comme pour la vitesse de la lumiére,
c’est juste une question de choix d’unités, et ¢a permet de
faire disparaitre des équations un facteur qui — en tout cas
a certaines étapes — ne joue pas de role déterminant. Ainsi
nous avons

P 1 .
FEnergie cinétique = 3 &2

Tournons-nous a présent vers 1’énergie potentielle. Dans
notre exemple, ’énergie potentielle est juste une fonction
de la position de la particule sur son axe — en d’autres
termes c’est une fonction de ¢. Nous allons la noter V(o).
Le lagrangien étant dans les cas simples, comme ici, I’éner-
gie cinétique moins I’énergie potentielle, on arrive a
. .2
L6, 9) = Z-V(©) (1)

Et ’action est

b 9
A= / <2—V(¢)> dt (4.2)



Nous avons appris dans le Volume 1 & utiliser les équations
d’Euler 3-Lagrange pour trouver la fonction ¢(t), c’est-a-
dire la trajectoire, qui minimise ’action. L’action est en
effet une fonctionnelle dont la variable indépendante est la
fonction ¢. Et trouver la fonction qui minimise la fonction-
nelle est un probléme de calcul des variations qui généralise
la minimisation des fonctions avec laquelle on est familier
en calcul différentiel ordinaire.

Quand il n’y a comme ici qu’'une seule fonction en va-
riable indépendante, la fonction ¢, il n’y a qu’une seule
équation d’Euler-Lagrange

doc_oc
dtog — 0¢

Notre tache est de résoudre cette équation avec le lagran-
gien donné par ’équation 4.1. Attaquons-nous au terme de
gauche, et commencgons par dériver le lagrangien par rap-
port & (;5 On voit immédiatement que c’est simplement

=g
¢
Du coté gauche de ’équation d’Euler-Lagrange, il faut en-
core dériver par rapport au temps. Cela donne qb
Du co6té droit nous devons dériver £ par rapport a ¢.
C’est simplement

oL oV(¢)

9 99

3. Leonhard Euler (1707-1783), mathématicien suisse qui vécut
principalement en Russie et en Allemagne. Il reconnut en Lagrange
(1736-1813) son fils spirituel.



En rassemblant nos calculs nous parvenons a 1’équation
d’Euler-Lagrange sous la forme plus explicite de I’équation
différentielle suivante

2

o _ 9V(9) (4.3)
dt? 0

Pour ceux qui ont déja lu le Volume 1, ce calcul n’était
qu’un petit exercice pour se rafraichir la mémoire. Et I’équa-
tion 4.3 a laquelle nous sommes arrivés est familiére. C’est
tout simplement ’équation de Newton F' = ma ou les deux
cOtés sont inversés, et m = 1. En effet le terme de droite de
I’équation 4.3 est 'opposé du gradient de 1’énergie poten-
tielle. C’est par définition la force exercée sur la particule.
Et le terme de droite est la dérivée seconde de la position,
c’est-a-dire ’accélération de la particule.

Pour trouver la trajectoire de la particule, il faut connai-
tre I’énergie potentielle en fonction de la position afin de
pouvoir calculer son gradient. Quand il n’y a, comme dans
I’exemple, qu’'un seul axe pour le déplacement de la parti-
cule c’est simplement la dérivée de V' par rapport a ¢. Nous
voulons dériver ou calculer le gradient de V' car cela conduit
au champ de forces. Par exemple si le gradient est uniforme
comme pour le champ de gravitation terrestre (localement
a la surface de la Terre), on obtient une chute uniformé-
ment accélérée, verticale ou parabolique (si on rajoute des
degrés de liberté a la particule) selon les conditions initiales
de position et de vélocité de la particule.

Pour le lecteur ou la lectrice qui ne sont pas familiers avec
I'utilisation des équations d’Euler-Lagrange, voici comment
nourrir son intuition & son sujet. L’action A est 'intégrale
depuis le point a jusqu’au point b du lagrangien en fonc-
tion du temps. Imaginons qu’on agite comme une ficelle en
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quelque sorte la trajectoire reliant le point [a, ¢(a)] au point
[b, ¢(b)] sur la figure 4.3, ces deux points étant maintenus
fixes. Cela produit toute une collection de trajectoires, pour
chacune desquelles on peut calculer une action avec l'inté-
grale 4.2.

(b, ¢(b)]

\\
-_——= = ===

83
o
Y
~

Figure 4.3 : Détermination de la trajectoire qui minimise ’action
(ou plus précisément la rend stationnaire).

En outre pour une trajectoire donnée cette intégrale est la
limite d’une somme finie d’éléments, calculés en chacune
des positions montrées sur la figure 4.3 entre a et b. Quand
les intervalles sont choisis de plus en plus étroits et de plus
en plus nombreux la somme converge vers 'intégrale.
Rentrons encore un peu plus dans le détail de la fagon de
penser & la trajectoire solution. Il y a deux fagons de le faire,
qui inversent ’ordre d’une optimisation et d’un passage &
la limite, mais qui sont équivalentes. On peut
a) soit penser a chaque trajectoire possible et a son
action, calculée par une intégrale, elle-méme définie
comme limite d’une suite de sommes, puis chercher
la trajectoire optimale,

11



b) soit penser & une collection finie et fixe de temps in-
termédiaires t; couvrant le segment de a a4 b, comme
sur les figures 4.2 et 4.3. On approxime alors I’équa-
tion 4.2 par une somme finie, qu’on peut aussi noter
A, de termes faisant intervenir la collection des ¢(t;)
et a priori aussi des ¢(t;). Mais pour chaque ¢(t;) on
prend 'approximation

P(tiv1) — o(t;)
tiv1 — 1

o(t;) ~

Donc la somme finie approximant une action est

4= Z { (t“mt)f V() } At

z+1_t

ou la collection des ¢(t;) sont les variables indépen-
dantes. Pour trouver la collection de ¢(t;) qui mi-
nimise A, on est ramené & un simple probléme d’al-
gébre et de calcul différentiel ordinaire. La collection
de points correspondants [t;, ¢(t;)] approxime une
trajectoire continue. Ensuite on augmente le nombre
de temps dans la collection des ¢; tout en réduisant
leurs intervalles. A la limite on obtient la trajectoire
optimale.

Les équations d’Euler-Lagrange (ou I’équation d’Euler-La-
grange quand elle est unique) permettent de trouver quelle
est la trajectoire dont ’action est minimale, ou pour étre
plus exact stationnaire. Elles transforment en effet le pro-
bléme "trouver la trajectoire rendant I’action stationnaire"
en une équation différentielle sur ¢(t), comme on I’a vu dans
I’exemple plus haut ot elle nous a conduits & 1’équation 4.3.

12



4.3 Principes de la théorie des champs

Nous venons d’étudier un exemple de champ ot il n’y avait
pas de dimensions spatiales dans ’espace sous-jacent. Ba-
sée sur cet exemple, essayons de développer notre intuition
pour une théorie des champs dans un monde ressemblant
davantage au nétre — un monde avec une ou plusieurs di-
mensions spatiales.

Nous partons du postulat que la théorie des champs —
en fait toute la physique — est gouvernée par un principe
d’action. Rendre I'action stationnaire est un principe trés
puissant qui encode et synthétise un trés grand nombre de
lois de la physique.

4.3.1 Le principe d’action

Définissons le principe d’action pour les champs. On vient
de voir que pour une particule se mouvant sur une dimen-
sion dans ’espace d’arrivée, et pour laquelle I'espace sous-
jacent était seulement le temps, figure 4.2, nous avons consi-
déré les deux extrémités fixes [a, ¢(a)] et [b, ¢(b)] de sa tra-
jectoire sur le diagramme ¢, ¢, et envisagé toutes les trajec-
toires possibles entre ces deux points, figure 4.3. Puis nous
avons cherché celle qui rend 'action stationnaire. Cette pro-
cédure est trés similaire & celle de trouver la distance la plus
courte entre deux points?. Le principe de moindre action
nous dit comment calculer la valeur de ¢(t) a toutes les
dates intermédiaires entre les deux dates frontiéres a et b.

4. Dans ce cas, au lieu de chercher & minimiser [ £ d¢, on cherche a

minimiser [ /dt? + d¢?. C’est généralement le premier exemple traité
dans les ouvrages sur le calcul des variations. Le deuxiéme exemple
est la détermination de la courbe brachistochrone.
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Le probléme de la théorie des champs est une générali-
sation de cette idée : on va calculer la valeur de ¢(t, X*) en
tous les points & 'intérieur d’une région de 'espace sous-
jacent quand on connait la valeur du champ en tous les
points de sa frontiére. Nous écrivons ¢(t, X') au lieu de
o(t, x) pour suggérer qu’il y a plusieurs dimensions spa-
tiales. Bt le champ ¢ (¢, X?) que 'on calculera est celui qui
minimise ou rend stationnaire une certaine intégrale géné-
ralisant [ £ dt.

La figure 4.1 représentait un champ ¢(¢, x) avec un es-
pace sous-jacent de dimension (1+1). Dans ce cas 'intégrale
d’action que ’on va chercher & minimiser aura la forme

A:/ L dt dx

La région d’intégration sera par exemple le rectangle repré-
senté en perspective dans le plan x, t. Et les conditions aux
limites seront que l'on connait la valeur du champ ¢(t, z)
sur les bords du rectangle.

La représentation du champ ou méme seulement de son
espace sous-jacent devient malaisée dés qu’il y a plusieurs
dimensions spatiales. Considérons un champ dont I’espace
sous-jacent a les dimensions ¢, x et y. On peut alors décider
de ne pas représenter ['axe des valeurs de ¢, et représenter
une région de I'espace sous-jacent comme sur la figure 4.4. Il
s’agit sur la figure d’une région parallélépipédique mais on
peut trés bien imaginer une région de forme quelconque. Le
probléme général de la théorie des champs peut étre énoncé
de la maniére suivante :

Ses valeurs sur la frontiére d’une région de l’espace-temps

étant données, déterminer en tous les points de la Tégion le
champ ¢ qui rend une certaine action stationnaire.

14



o(t,x,y)

xZT

Figure 4.4 : Espace sous-jacent d’un champ ¢(¢, z, y). L’axe sur
lequel ¢ prend ses valeurs n’est pas représenté.

Quel champ minimise 'action ? Intuitivement de méme que
sur la figure 4.3 on a agité la trajectoire pour suggérer toutes
les trajectoires possibles afin de choisir celle optimale, sur
la figure 4.1 on peut imaginer d’agiter la nappe — comme
quand on plie un drap avant de le ranger — pour suggérer
tous les champs possibles, mais dont les valeurs sur la fron-
tiere sont données, avant de déterminer celui qui minimise
I’action.

L’action correspondant & un champ est maintenant une
intégrale multiple sur ¢ et les dimensions spatiales comme
on ’a vu plus haut. Pour ne pas surcharger les notations on
va laisser tomber le signe intégrale multiple. Pour un champ
sur l'espace-temps (3+1) on écrira 'action sous la forme

A:/Edtdacdydz
ou le lagrangien n’a pas encore été spécifié. Mais en théorie

15



de la relativité nous avons appris & traiter ces quatre dimen-
sions sur un pied d’égalité, chacune d’entre elle participant
a la construction de ’espace-temps. Nous avons gommé la
différence entre I'axe temporel et les axes spatiaux en leur
donnant des noms similaires : X% X', X? et X3, que I'on
résume sous la forme X*. Il est habituel d’écrire l'intégrale
ci-dessus sous la forme plus ramassée suivante

A:/Ed%

Tournons-nous a présent vers le lagrangien sous le signe
intégrale. Et regardons comment on va minimiser 1’action.

4.3.2 Champ ¢ rendant ’action station-
naire

Etant donné que le lagrangien est intégré sur le temps mais
aussi l'espace, il est souvent maintenant appelé densité la-
grangienne. C’est juste une question de cohérence dimen-
sionnelle. Comme on veut que 'action ait les mémes unités
dans le cas d'un champ et dans le cas d’une particule, et
que le lagrangien est multiplié par un petit élément de vo-
lume sous le signe intégrale, ses propres unités ont changé.
Ce doit étre une énergie par unité de volume, c’est-a-dire
une densité.

Quelles sont les variables (ou fonctions) indépendantes
qui gouvernent le lagrangien 7 Retournons un instant a une
particule non-relativiste. Le lagrangien dépendait des coor-
données de la particule, c’est-a-dire du champ ¢(t), et de
sa vélocité, c’est-a-dire d¢/0t. La généralisation naturelle,
inspirée par I'idée d’espace-temps de Minkowski, est que la
densité lagrangienne soit maintenant fonction de ¢ et de
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toutes les dérivées partielles de ¢ par rapport au temps et
a l'espace. C’est-a-dire, £ va maintenant dépendre de

, 20 06 0 00
T ot’ oz’ Oy’ Oz

Alors, avec nos notations ramassées, nous allons écrire 1’ac-

tion sous la forme

d
A= /E <¢, wf#) d*z

ou l'indice p parcourt les quatre dimensions temporelle et
spatiales. Dans cette intégrale d’action, nous n’avons pas
écrit de dépendance explicite de £ vis-a-vis de ¢, z, y ou z.
Mais de méme que dans certains problémes de mouvement
de particules le lagrangien peut dépendre explicitement du
temps (en plus de sa dépendance implicite, car la position
et la vélocité dépendent de toute fagon du temps), la den-
sité lagrangienne peut avoir une dépendance explicite & X*.
Néanmoins, pour un systéme fermé — dans lequel 1’énergie
et 'impulsion sont conservées — £ ne dépend pas explicite-
ment du temps ni de la position dans I’espace.

Comme en mécanique classique ordinaire, les équations
du mouvement sont obtenues en "agitant" le champ ¢ jus-
qu’a trouver celui qui minimise 'action. C’est bien stir seule-
ment une image. La procédure pratique est d’utiliser les
équations d’Euler-Lagrange qui, aprés qu’on a un peu tra-
vaillé dessus, conduisent & des équations différentielles sur
le champ ¢. Dans le cas d’une particule avec un degré de
liberté, on a vu dans le Volume 1, et partiellement révisé
ici, que I’équation d’Euler-Lagrange

4oL or_

— —— =0 (4.4)
B
dt aaif 09
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conduit & I’équation de Newton, qui est une équation dif-
férentielle d’ordre 2, ou bien de maniére équivalente aux
équations de Hamilton, qui sont deux équations différen-
tielles d’ordre 1 (Vol 1 chapitre 8).

Comment les équations d’Euler-Lagrange se transfor-
ment-elles dans le cas d’un espace sous-jacent multidimen-
sionnel 7 Nous avons démontré dans le Volume 1 que I’équa-
tion d’Euler-Lagrange 4.4 était satisfaite par la trajectoire
optimale, c’est-a-dire celle effectivement empruntée par la
particule. Nous n’allons pas démontrer quelle équation gé-
néralisant ’équation 4.4 est satisfaite par le champ ¢(XH),
mais nous allons donner sa forme. Le premier terme dans
I’équation 4.4 est une dérivée par rapport au temps, c’est-a-
dire la premiére des quatre composantes. Il va étre remplacé
par une somme de termes similaires pour chaque compo-
sante. En d’autres termes,

oXH

et ce sur quoi porte chacune de ces quatre dérivées partielles
est modifié respectivement de maniére analogue. L.’équation
4.4 devient

o oL oL
ZaXuaf% —%_0 (4.5)

Par exemple le premier terme de la somme de gauche dans
cette équation est simplement le premier terme dans I’équa-

tion 4.4 :
0 oc

9t 70
ot 9%
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Le d droit est devenu un 9 partiel, pour insister sur le fait
qu’il y a maintenant trois autres variables sur le méme plan
que t.

L’équation 4.5 est I’équation d’Euler-Lagrange pour un
champ scalaire dont ’espace sous-jacent est ’espace-temps
A quatre dimensions de la relativité. Nous allons voir dans
la section 4.3.4 qu’elle est étroitement liée & une équation
décrivant des ondulations de ¢.

Mais d’abord signalons que, comme en mécanique des
particules, il peut y avoir plus d’un degré de liberté. Ex-
primé dans le langage de la théorie des champs, cela veut
dire que ¢ peut étre vectoriel, ou si I’on préfére qu’il peut y
avoir plusieurs champs scalaires sur ’espace-temps. Soyons
explicites et supposons que ’on considére deux champs sca-
laires ¢ et x (la lettre grecque chi, prononcée qui). L’action
dépendra de chaque champ et ses dérivées

¢
¢ Ixn
X
X Bxu

Il doit alors y avoir deux équations d’Euler-Lagrange du
méme type que ’équation 4.5

Z 0 0L oc 0
AXE a 96  Hh
H oX# aa)% 0¢
(4.6)

Z o oL oL
8X“66X ox

Et s’il y a encore plus de degrés de liberté, c’est-a-dire de
champs scalaires, il y aura encore plus d’équations comme
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ci-dessus. On pourrait exprimer tout ceci en termes d’un
seul champ vectoriel, mais il n’y en aurait pas moins une
équation par composante dans I’espace d’arrivée.

4.3.3 Plus sur les équations d’Euler-La-
grange

Le lagrangien le plus simple pour une particule non-relativiste
est donné par ’équation 4.1. Il contient une énergie ciné-

tique
1 (o)
2\ dt

(on a pris m = 1) et une énergie potentielle
—V(9)

Nous pourrions penser que la généralisation en théorie des
champs aura une forme similaire, mais ot I’énergie cinétique
contiendra aussi des dérivées spatiales :

=3[ (R) - () (3

Cependant il y a quelque chose de manifestement faux dans
cette équation : le temps et 'espace y jouent exactement le
méme role. Certes la relativité les traite plus ou moins sur
un pied d’égalité, mais il ne faut pas étre plus royaliste que
le roi. Méme en théorie de la relativité, le temps et 1’es-
pace ne sont pas complétement symétriques. L’expérience

- V(9)
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ordinaire nous dit bien que ce n’est pas la méme chose. L’ex-
pression de l'invariant de base en géométrie de Minkowski
nous met la puce a l'oreille. On a en effet

dr? = dt? — da® — dy? — d2?

D’autre part nous verrons plus tard que les dérivées 9¢/0 X
forment un quadrivecteur et que la quantité

ao\>  (96\® [0\ [0¢)\?

ot Ox dy 0z
est invariante par transformation de Lorentz. Cela suggére
d’utiliser ce terme dans l’expression du lagrangien. Plus
tard, quand nous nous occuperons de l'invariance de Lo-

rentz, nous verrons pourquoi c’est la bonne fagon de faire.
Donc, dans la théorie des champs, 1’expression

=3[ (- () - ()

sera notre lagrangien. Nous pouvons aussi le voir comme un
prototype. Par la suite nous construirons d’autres théories
fondées sur des lagrangiens similaires a 4.7.

La fonction V' (¢) est appelée le potentiel de champ. Elle
est analogue & !’énergie potentielle d’'une particule. Plus
précisément, c’est une densité d’énergie (une énergie par
unité de volume) en chaque point de l'espace sous-jacent
mais qui dépend seulement de la valeur du champ en ce
point. La fonction V(¢) dépend du contexte, et dans au
moins un cas important elle peut étre déduite de l'expé-
rience. Nous discuterons de ce cas dans la section 4.5.1.

- V(o)
(4.7)
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Pour le moment, V(¢) peut étre n’importe quelle fonction
de ¢.

Avant de voir comment utiliser le lagrangien donné par
I’équation 4.7 dans les équations d’Euler-Lagrange, faisons
une bréve digression.

Mécanique des milieux continus

Dans ce chapitre, ce que nous étudions, que j’ai appelé la
théorie classique des champs, porte aussi un autre nom :
c’est la mécanique des milieux continus.

La mécanique des milieux continus embrasse de nom-
breux domaines de la physique, depuis la mécanique des
fluides, jusqu’a ’élasticité, en passant par la résistance des
matériaux, 1’électromagnétisme et la magnétohydrodyna-
mique des fluides. Si nous parlons d’élasticité, les degrés de
liberté peuvent étre les déplacements des points dans le ma-
tériau élastique. En mécanique des fluide, ils peuvent étre
les vélocités des petits volumes de fluide, et ainsi de suite.
Ce que nous faisons est donc aussi appelé mécanique des
milieux continus.

Un autre point qui mérite d’étre souligné concerne la
présence ou l’absence de la dimension temporelle dans 1’es-
pace sous-jacent. Si nous regardons un espace sous-jacent,
en chaque point duquel on mesure un ou plusieurs champs,
et qui n’a pas de dimension temporelle, les équations d’Euler-
Lagrange 4.6 restent valides. Simplement dans ce cas elles
nous permettront de trouver la solution de problémes de
statique.

Par exemple, nous pourrions considérer un champ élec-
trique ou un champ magnétique créés par un courant élec-
trique circulant dans un solénoide. Si le probléme n’avait
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pas de dépendance au temps — si le courant était continu et
stable —, dans les équations 4.6 nous éliminerions toutes les
dérivées temporelles. Alors nous aurions les mémes équa-
tions mais avec seulement les composantes spatiales.

Exemple d’utilisation de la densité lagrangienne

Prenons la densité lagrangienne donnée par 1’équation 4.7
et déduisons pas a pas les équations de mouvement du
champ — pensez a la nappe représentée sur la figure 4.1 mais
imaginez-la avec trois dimensions spatiales au lieu d’une
seule & coté de la dimension temporelle, et le champ quant
a lui prend ses valeurs scalaires dans autre dimension dans
ce qu’on appelé dans ce chapitre I'espace d’arrivée. L’équa-
tion d’Kuler-Lagrange 4.5 nous dit exactement comment
procéder. L’indice u prend les valeurs 0, 1, 2 et 3. Chacune
des valeurs de cette variable muette engendre un terme sé-
paré dans I’équation pour le champ. Voici comment cela se
passe :

1) Nous prenons d’abord pour l'indice p la valeur 0.
En d’autres termes le premier X* est la coordonnée
temporelle X°, dénotée aussi t. Et nous commencons
par calculer la dérivée partielle de £ par rapport &
0¢/0t. Avec la formule 4.7 cela donne

aL 99

=
0% ot

Puis nous devons prendre la dérivée partielle par
rapport & XY (c’est-a-dire t) de ce résultat inter-
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médiaire. On obtient

o oL 9%
09X g% - ot?

Ce terme 0%¢/0t? est analogue a I’accélération d’une
particule.

Ensuite on passe & u = 1. La coordonnée X*# devient
la premiére coordonnée spatiale X', dénotée aussi .
Nous devons maintenant calculer la dérivée partielle
de £ par rapport a d¢/0x. Cela donne, en prétant
attention au signe,

oL 99
3% ox

Puis on calcule la dérivée partielle par rapport x de
ce deuxiéme résultat intermédiaire.

00L 0 ( 09\ _ 9%
6953%_83: oxr )  0Ox?

Et nous faisons de méme avec = 2 et u = 3, c’est-
a-dire avec y et z.

Rassemblant nos calculs, I’équation d’Euler-Lagrange
4.5 devient

0 P %6 %o oV

o2 9x2 Oy 022 ¢ 0 (48)
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Comme d’habitude, si nous voulons utiliser des uni-
tés conventionnelles nous devons réintroduire le fac-
teur ¢ explicitement. (Il est déja présent dans ’équa-
tion 4.8, mais sous la forme d’un 1 qui ne se voit pas.)
Le résultat est

10% 0% ¢ 0% OV

2or 02 o o2 tas 0 (49

4.3.4 Ondes et équations d’onde

De tous les phénoménes décrits par la théorie classique des
champs, le plus courant et plus simple & comprendre est la
propagation des ondes. Les ondes sonores, les ondes lumi-
neuses, les ondes a la surface ou dans I’eau, les ondes le long
d’une corde vibrante : toutes sont décrites par des équa-
tions similaires, qui sans surprise sont appelées des équa-
tions d’onde. On a déja vu dans les cours précédents 1'im-
portance de l'oscillateur harmonique. La relation entre la
théorie des champs et les mouvements ondulatoires est 1'un
des faits les plus importants de la physique®. Il est temps
de I'explorer.

L’équation 4.9 est une généralisation de 1’équation de
Newton du mouvement, qui était ’équation 4.3 reproduite

5. Les cours de physique générale de premier cycle sont parfois
découpés en trois parties : 1) mécanique classique newtonienne, 2)
électricité et magnétisme, 3) vibrations et ondes. Voir par exemple
les cours de Walter Lewin au Massachusetts Institute of Techno-
logy https://tinyurl.com/hnpye3z qui sont une bonne préparation a
ceux plus avancés de Leonard Susskind http://theoreticalminimum.
com/courses/ dont la collection Le Minimum Théorique est la version
livre.
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ci-dessous,

¢y 9V(9)

a2 99

Dans cette équation de Newton le terme —9V (¢)/0¢ est
une force agissant sur la particule et déterminant son accé-
lération & chaque instant. Dans l’équation 4.9 décrivant le
mouvement d’un champ, c’est aussi une sorte de force agis-
sant sur le champ, et I’éloignant de son mouvement naturel
stable® quand il n’y a pas de force.

Pour une particule le mouvement sans force externe est un
mouvement uniforme, a vélocité constante. Pour un champ,
le mouvement sans force externe est une onde se propageant
comme un son ou une radiation électromagnétique stables.

Pour voir cela, simplifions I’équation 4.9. D’une part
omettons le terme lié a une force en prenant V(¢) = 0.
D’autre part au lieu de trois dimensions spatiales, considé-
rons-en seulement une. Nous sommes maintenant dans un
espace-temps sous-jacent plus simple de dimension (1 + 1).
Et I'équation 4.9 devient

10% 0%

229 99 4.1
c? 0t Ox? 0 (4.10)

Je vais vous montrer tout une famille de solutions. Consi-
dérons n’importe quelle fonction de la quantité (z + ct).
Dénotons-la F'(x + ct). D’aprés notre définition trés géné-
rale d’un champ, donnée au début de ce chapitre, F' est un
champ scalaire sur ’espace sous-jacent de dimension (1-+1)

6. Un mouvement stable est a priori un oxymore. On veut dire par
1& un mouvement périodique.
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(t, ). On peut le voir comme une nappe, figure 4.1. Mais
ce champ a une forme intéressante un peu comme une che-
velure crantée.

Considérons les dérivées de F' par rapport & x et par
rapport a t. Il est facile de voir qu’elles satisfont

OF (z + ct) c(‘?F(m + ct)

ot ox

En appliquant la méthode une seconde fois, et en se rappe-
lant qu’on peut inverser l'ordre des dérivations partielles,
on a meéme

O*F(x+ct) 2 O?F(x + ct)
ot? N Ox?

soit

1 0?F(x+ct) O?F(x+ct)
2o T am  —0 @1

L’équation 4.11 n’est autre que I’équation d’onde 4.10 ap-
pliquée a la fonction F. Nous avons donc trouvé une vaste
classe de solutions de I’équation d’onde. Toute fonction de x
et ¢ seulement a travers la quantité (z+ct) est une solution.

Quelles sont les propriétés des fonctions de la forme
F(z + c¢t)? Au temps ¢ = 0 c’est juste la fonction F(z).
A mesure que le temps passe, la valeur de la fonction au
point x de l'espace sous-jacent change, car elle dépend de
(x+ct). Son graphe dans un plan z, z se déplace rigidement
vers la gauche avec la vélocité ¢ (pour compenser le terme
+ct dans son argument). Prenons un exemple de fonction
F (que 'on identifie maintenant a notre champ ¢). Soit une
fonction sinusoidale de période spatiale 27 /k

o(t, ©) =sink(z + ct)
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C’est une onde sinusoidale se déplagant vers la gauche avec
la vitesse c. Il y a aussi des solutions en cosinus, et méme des
paquets d’onde et des impulsions. Tant qu’elles se déplacent
vers la gauche avec la vitesse ¢ ce sont des solutions de
I’équation 4.10.

Qu’en est-il des ondes se déplagant vers la droite ? Sont-
elles aussi décrites par ’équation 4.10 7 La réponse est oui.
Tout ce qu’on a & faire pour que 'onde se déplace vers la
droite est de changer (z + ct) en (z — ct). Il est laissé au
lecteur ou & la lectrice le soin de montrer que toute fonction
dépendant de x et t seulement a travers (x —ct) est solution
de I'équation 4.10 et a un graphe dans le plan x, z qui se
déplace vers la droite & mesure que le temps passe.

Avant de passer aux champs relativistes concluons cette sec-
tion sur les ondes avec quelques observations.

Une onde sinusoidale ¢(¢, X*) sur I'espace sous-jacent
(t, X?) est le mouvement le plus simple que peut prendre un
champ quand il n’y a pas de potentiel de champ V(). C’est
la généralisation & un champ avec des dimensions spatiales
du mouvement uniforme ¢(¢) d’une particule sur 1’espace
réduit au simple axe temporel ¢, quand il n’y a pas de champ
de forces externe. Dans les deux cas il ne faut pas perdre de
vue que I'espace dans lequel ¢ prend ses valeur est 1’espace
d’arrivée du champ. C’est un autre azxe spatial qui ne fait
pas partie des axes de l’espace sous-jacent.

Pour penser & un champ stable dont I’espace sous-jacent
a plusieurs dimensions spatiales, on peut penser a la houle
sur la mer. Ici 'espace sous-jacent a deux dimensions spa-
tiales et bien sir 'axe temporel. En un point donné de la
mer, son niveau monte et descend périodiquement en fonc-
tion du passage de la houle. Le champ est le niveau de la
mer. Il prend ses valeurs sur un autre axe que les deux
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axes spatiaux des cartes marines. Quand on veut dessiner
la houle, en général on représente les trois dimensions x,
y et axe d’arrivée z (qui n’est pas un des axes de l'es-
pace sous-jacent). Et on ne représente pas 1’axe temporel,
contrairement & ce qu’on a fait sur la figure 4.1, ou l'exis-
tence d’un seul axe spatial z le permettait.

Quand on dit que la houle se déplace, il faut faire at-
tention & une erreur classique dans laquelle peut nous faire
trébucher le bon sens. Les points (z, y) sur la mer par dé-
finition ne se déplacent pas. Alors qu’est-ce qui se déplace ?
D’une part, si on met un bouchon au point (z, y) son alti-
tude va changer en fonction de la houle; il montera et des-
cendra alternativement, mais en restant toujours au méme
point (z, y). D’autre part on peut dire si I'on veut qu'une
créte de vague de la houle se déplace, ce n’est pas inexact,
mais rien de tangible ne se déplace sur le plan (z, y).

Quand le champ est dans une dimension perpendiculaire
a espace sous-jacent on parle d’onde transverse. Il existe
aussi des ondes longitudinales, par exemple quand on fait
circuler une impulsion dans un long ressort, ou tout sim-
plement les ondes sonores. L’axe d’arrivée est alors physi-
quement confondu avec un des axes de I’espace sous-jacent,
mais du point de vue de ’analyse il reste distinct.

Les vibrations sont & premiére vue simples, mais elles
conduisent & des phénoménes complexes. Il existe aussi des
vibrations stables sur 'espace sous-jacent R? qui ne se dé-
placent pas (au sens de la houle). Penser aux vibrations
complexes qu’on peut donner & une plaque de métal, sur
laquelle on a versé du sable pour visualiser les nceuds de vi-
brations” Un autre domaine est la recherche en anti-bruit
actif. Elle bute encore sur des mathématiques insolubles
par les méthodes analytiques, et encore formidables pour

7. Un film pédagogique est a https://youtu.be/wvIJAgrUBF4w
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les méthodes numériques, et de ce fait progresse lentement.
Imaginez, cependant, un jour pouvoir ouvrir votre fenétre
en ville et ne pas entendre le bruit des voitures, seulement
le chant des oiseaux.

La maitrise des vibrations dans les machines est un do-
maine important de la technologie. Les TGV les plus ré-
cents, dans lesquels on peut boire un café, lire et écrire sur
la tablette devant soi alors qu'ils se déplacent & 300 km /h,
en termes de controle des vibrations sont aux premiers TGV
ce que ceux-ci étaient aux locomotives a vapeur.

Une machine, méme statique, mal congue peut se briser
& cause des vibrations engendrées par son fonctionnement.
Un exemple célébre de dégats causés par les vibrations est
celui du pont du détroit de Tacoma, dans I’Etat de Wa-
shington aux Etats-Unis, qui quelques mois aprés son inau-
guration en 1940 entra en vibration sous l'effet du vent
comme une anche de clarinette, et se désintégra.

4.4 Champs relativistes

Quand nous construisons une théorie des particules, il y a
deux principes de base que nous devons respecter, en plus
du principe de moindre action.

1. Une action doit étre une intégrale. Dans le cas d’une
particule, c’est une intégrale sur le temps le long
de la trajectoire. Dans le cas d’un champ avec des
dimensions spatiales, ¢(¢, X*), c’est une intégrale
sur ’espace-temps.

2. Une action doit avoir la méme valeur dans tous les
référentiels. Elle doit étre construite & partir de quan-
tités de telle sorte qu’elle conserve exactement la
méme forme.
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Comment nous sommes-nous assurés de respecter ces prin-
cipes dans le cas d’une particule ? Tout d’abord nous avons
construit 'action totale A en sommant les petites actions
de nombreux petits segments le long de la trajectoire de la
particule. Ensuite, nous avons pris la limite de cette somme
quand la taille des petits segments tendait vers zéro. Par
définition, la somme devient 'intégrale. Le point crucial
est ceci : quand nous avons défini 'action pour I'un de ces
petits segments, nous avons choisi une quantité qui était
invariante — le temps propre le long de la trajectoire. Etant
donné que tous les observateurs s’accordent sur la valeur
du temps propre de chaque petit segment, ils s’accordent
forcément aussi sur la valeur de ’action sur chaque trajec-
toire possible. Par conséquent, les équations du mouvement
que 'on déduit de I’ensemble des actions possibles — en ap-
pliquant le principe de moindre action — sont exactement
les mémes dans tous les référentiels. Les lois de la méca-
nique des particules sont invariantes. J’ai déja fait allusion
a cette fagon de procéder pour les champs dans la section
4.3.3. Mais maintenant nous voulons aborder 'invariance de
Lorentz dans la théorie relativiste des champs de maniére
plus formelle et détaillée.

Nous devrons savoir comment former des quantités in-
variantes & partir des champs, et ensuite les utiliser pour
construire des intégrales d’action qui sont invariantes elles
aussi. A cette fin, nous devrons avoir une vue claire du
concept de transformation invariante pour un champ.
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4.4.1 Propriétés des transformations sur
les champs

Retournons a 'exemple ot Art était dans une gare et Lenny
dans un train traversant la gare avec une certaine vélocité v.
Ils considéraient tous les deux le méme événement, par
exemple une lampe qui s’allume quelque part dans ’espace-
temps. L’espace-temps, comme notre espace a trois dimen-
sions spatiales ordinaires, est défini avant toute notion de
repére ou de référentiel. Et un événement y est bien défini
indépendamment de toute coordonnée 8.

Dans le référentiel de la gare, arbitrairement dit au re-
pos, et utilisé comme référentiel de base pour le diagramme
de Minkowski, I’événement a les coordonnées (t,z,y,2).
Dans le référentiel du train, il a les coordonnées (¢, 2/, v/, 2').
Et, puisque nous avions laissé nos considérations d’événe-
ments et de référentiels en mouvement relatif depuis un mo-
ment, rappelons qu’il s’agit d’un seul et méme événement,
simplement avec deux labels différents.

Art et Lenny ont aussi des détecteurs de champ. Et
leurs appareils enregistrent des valeurs numériques pour un
champ ¢. La variété de champ la plus simple est un champ
pour lequel ils obtiennent exactement la méme mesure. Si
nous appelons a priori le champ que mesure Art ¢(¢, x, y, z),
et le champ que mesure Lenny ¢'(t', 2, 3/, 2’), alors la trans-
formation la plus simple est

o'ty 2 ) = bt 2y, 2) (4.12)

8. C’est a vrai dire une question philosophique intéressante. Mais
nous faisons ici simplement référence au fait géométrique élémentaire
qu’un méme espace peut avoir différents repéres pour étiqueter ses
points, ou un méme espace-temps peut avoir différents référentiels
pour étiqueter ses événements.
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En d’autres termes, en n’importe quel événement de I’espace-
temps Art et Lenny (et qui que ce soit d’autre) sont d’ac-
cord sur la valeur du champ ¢ en cet événement-la.

Cette propriété est une caractéristique d’un champ sca-
laire. En effet un champ scalaire n’est pas concerné par le
référentiel ; dés qu’un événement est choisi dans ’espace-
temps, les observateurs seront forcément d’accord sur la
valeur du champ en cet événement, figure 4.5.

t t’

o O, 2") =t x)

xr
-/sj\'f' or (dX')"

‘

Y
8

O

Figure 4.5 : Champ scalaire vu par deux référentiels en mouve-
ment 'un par rapport a I'autre. Les valeurs du champ scalaire en
chaque événement ne sont pas affectées par le choix de référentiel.
En d’autres termes ¢'(t', z') = ¢(¢, x).

On a dit en introduction que la température est typique-
ment un champ scalaire. A vrai dire ce n’est pas un trés
bon exemple car la température est un concept un peu plus
compliqué qu’il n’y parait et que nous définirons de maniére
précise dans le Volume 6 sur la thermodynamique statis-
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tique®. Si vous mesurez la température atmosphérique avec
deux thermométres 'un au repos et 'autre en mouvement
vous n’obtiendrez pas exactement les mémes valeurs aux
mémes points de I'espace-temps. Néanmoins le concept de
champ scalaire devrait étre clair.

Tous les champs ne sont pas scalaires. Nous avons men-
tionné en introduction la vélocité du vent. Dans un espace a
trois dimensions spatiales, plus une composante temporelle,
la vélocité du vent en un point donné a une date donnée
a trois composantes spatiales. Des anémomeétres dans des
référentiels différents ne mesureront pas les mémes compo-
santes. Par exemple, 'air peut étre au repos par rapport a
la gare, mais si Lenny passe la téte par la fenétre il aura les
cheveux, ou disons plutét la barbe, dans le vent.

Venons-en maintenant au concept de champ quadrivecto-
riel. La vélocité du vent reste un bon exemple. En un évé-
nement quelconque de 'espace-temps, dans le référentiel de
la gare Art mesure la vélocité de lair, c’est-a-dire les trois
composantes dX*/dt des molécules d’air en cet événement-
la. II obtient le tri-vecteur ordinaire

Va:(t’ :L‘? y? Z)? Vy(t’ :L‘? y? Z)? Vz (t7 x? y? Z)

Mais vous pouvez déja deviner que dans la théorie de la
relativité nous devrions représenter la vélocité des molé-
cules par leur quadrivitesse, c’est-a-dire non pas avec Vi =
dX'/dt mais avec UF = dX*/dt.

Connaissant les composantes de la quadrivitesse du vent
dans le référentiel de la gare, quelles sont-elles dans le réfé-
rentiel du train ? Comme la quadrivitesse est un quadrivec-

9. Les notes de cours en anglais sont disponibles & https://www.
lapasserelle.com/statistical_mechanics/
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teur (c’est-a-dire que ce sont quatre nombres qui se trans-
forment selon la transformation de Lorentz), on sait auto-
matiquement que

,O_Uo—le
SRR
,1_U1—UU0
vy = V1—0? (4.13)
(U/)2:U2
(U/)3:U3

Je n’ai pas inclus les dépendances a (¢, x, y, z) ou (¢, 2/, ¢/, 2')
pour ne pas surcharger les notations, mais la régle est simple :
du coté droit les composantes dépendent de (¢, x,y, z) et du
coté gauche de (¥, 2/, ¢/, 2’). Mais ces deux jeux de coordon-
nées sont des labels sur le méme événement.

Considérons un autre quadrivecteur intéressant que nous
appellerons le gradient dans ’espace-temps du champ sca-
laire ¢. Ses composantes sont les dérivées de ¢. Nous utili-
serons la notation allégée suivante pour ces dérivées

99
oXH

0o = (4.14)
Notez l'indice p en position basse dans le terme de gauche.
La justification pour cette fagon de noter apparaitra quand
nous manipulerons des tenseurs et serons amenés a faire des
sommes sur des indices.

Nous pourrions penser que d,¢ est un quadrivecteur
et se transforme de méme fagon que U¥. Nous ferions une
erreur, mais pas une grosse erreur.
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4.4.2 Interlude mathématique : compo-
santes covariantes

Faisons une pause pour parler de divers aspects de la trans-
formation de la représentation des objets mathématiques
d’un référentiel vers un autre. Nous avons vu que les champs
scalaires ont tout simplement la méme représentation, c’est-
a~dire la méme mesure tant qu’on ne change pas d’unités,
dans tous les référentiels. Regardons maintenant des objets
mathématiques plus élaborés.

Supposons que nous ayons un espace décrit par deux
jeux de coordonnées X* et (X')*. Considérons un inter-
valle infinitésimal représenté respectivement par dX* et par
d(X")*. Le calcul différentiel a plusieurs variables ordinaire
implique que les deux intervalles infinitésimaux satisfassent
la relation

I
ax” (4.15)

AY . a(X/)
dX)" = ; oxv
Nous expliquons pourquoi plus en détail un peu plus bas
quand nous parlons de fonctions composées.

Einstein écrivit beaucoup d’équations de ce genre. Aprés
quelques temps, il observa un motif : chaque fois qu’il y
avait un indice répété dans une méme expression — l'indice
v du coté droit de ’équation 4.15 est un tel indice — I'ex-
pression comportait une somme sur cet indice. Dans 'un de
ses articles sur la relativité générale, au bout de quelques
pages apparemment il se fatigua d’écrire le signe somme et
déclara que désormais chaque fois qu'une expression com-
porterait deux fois le méme indice il faudrait opérer une
somme sur lui. Cette convention devint connue sous le nom
de convention de sommation d’Finstein. Elle est mainte-
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nant universellement employée au point qu’aucun physicien
ne prend plus la peine de la mentionner quand il écrit des
équations. Adoptons-la nous aussi et dispensons-nous du
signe ), dans I’équation 4.15. On la réécrit plus simple-
ment

(XM
oXV

d(X"H = dX" (4.16)

ol la sommation sur l'indice muet p du coté droit est im-
plicite. Un autre garde-fou est que v apparait a droite mais
pas a gauche, donc il y a clairement une opération implicite
du coté droit : c’est la sommation sur v.

Si les équations reliant X a X’ sont linéaires, comme c’est
le cas dans la transformation de Lorentz, alors les déri-
vées partielles ag(ly)u sont nécessairement des coefficients
constants, comme ’est la pente d’une droite. Considérons la
transformation de Lorentz permettant de passer de X a X',
et limitons-nous aux deux premiéres coordonnées puisque
dans un boost le long de X', les deux autres composantes
spatiales ne sont pas affectées.

Les équations reliant (X')" et (X/)! & X% et X! sont

(X/)OZM
V1 —v?
(X')! = X1 —vx0

Voici la lise des quatre dérivées partielles 8((9)(% en utilisant

la notation v pour l/m
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axo 7

8(X/)O

oxt T

o) (4.17)
oxo ~— 7

8(X/)1
axt 7

Si nous introduisons ces coefficients dans les équations 4.16
nous obtenons comme il se doit

d(X") = 4dX° —vydX!
(4.18)
d(X") = —vyd XY + yd X!

Cela a bien siir aussi une notation matricielle avec la ma-
trice de changement de base exprimant la nouvelle base (du
référentiel en mouvement) dans 'ancienne (du référentiel au
repos).

Tirons de cet exercice une régle générale pour la trans-
formation des quadrivecteurs. Retournant & I’équation 4.16,
nous pouvons remplacer les composantes infinitésimales par
les composantes de n’importe quel quadrivecteur dans les
référentiels au repos et en mouvement. L’équation 4.16 de-
vient pour n’importe quel quadrivecteur

(X"
oXv

(A = A (4.19)

Dans le cas d’une transformation de Lorentz, les dérivées
partielles sont les composantes de la matrice de change-
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ment de base de ’équation 4.18. On peut donc écrire plus
explicitement

(A/)(): ’}/AO—’U’YAl
(4.20)
(A = —vyA® 4 AL

Mais I’équation 4.19, qui est une notation tensorielle, est
plus générale. Elle est vraie pour des transformations de ré-
férentiels quelconques ' — auquel cas les dérivées partielles
ne sont plus des constantes, mais dépendent de ’événement
(X° X1) ot I'on se trouve.

Mon réel objectif en présentant tout ceci n’est pas d’expli-
quer comment dX* ou A* se transforment, mais de mon-
trer comment 0,¢ se transforme. Les quatre composantes
de 0,¢ forment aussi un quadrivecteur, mais d'une sorte
un peu différente de ceux qu’on a vus jusqu’a présent, par
exemple dX* ou U¥.

Les composantes de d,¢, par leur définition méme a
I’aide de I’équation 4.14, font manifestement référence au
systéme de coordonnées X, mais elles peuvent étre trans-
formées pour que 'objet qu’elles représentent — le gradient
d’un champ scalaire — soit exprimé dans le systéme de co-
ordonnées X'.

La régle basique de transformation provient du calcul
différentiel élémentaire. C’est une généralisation de la régle
de dérivation en chaine — qui dans les occasions solennelles

10. On se rappelle qu’un référentiel n’est qu’une collection d’éti-
quettes sur les événements. Deux référentiels sont simplement deux
collections d’étiquettes différentes. Quand elles sont raisonnables on
peut différentier les coordonnées dans 'une par rapport aux coordon-
nées dans l'autre.
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porte le nom de théoréme de dérivation des fonctions com-
posées. Rafraichissons-nous la mémoire. Soit une fonction
f(x) de R vers R. Si 'on change de variable et que x soit
lui-méme une fonction g(2’), alors on peut s’intéresser a la
fonction f en fonction de 2’ que l'on note aussi f o g(z').
Concrétement, a chaque point z’ de la droite R corres-
pond un point x par la fonction g, et & x correspond une
valeur par la fonction f. On peut s’intéresser au taux de
variation de f quand on fait varier z’.
La dérivée de f par rapport a z’ est obtenue par la régle
de dérivation des fonctions composées
daf _ df dg

de’ — dxda’
On s’en rappelle parfois en I’écrivant

A _ df dx
de'  dxdx’

et en "simplifiant" par dx. Il se trouve que c’est formelle-
ment correct ici, mais les ratios d’infinitésimaux, inventés
par Leibniz, ne se manipulent pas comme des ratios habi-
tuels. C’est parce qu’ils étaient vagues qu’au XIX® siécle des
mathématiciens comme Augustin Cauchy (1789 - 1857) et
Karl Weierstrass (1815 - 1897) ont redéfini la notion de dé-
rivée plus proprement & l'aide de limites de vrais ratios.
Mais comme nous l’avons déja mentionné, les infinitési-
maux, quand ils sont manipulés avec soin, sont trés intuitifs
et commodes, et sont restés des instruments dans la boite
a outil des physiciens et des mathématiciens 't 12 .

11. Ne serait-ce qu’en observant que la notation dy/dz a perduré,
méme si elle trouble — & juste titre — les néophytes.

12. De méme Bernhard Riemann (1826 - 1866) a défini proprement
la notion d’intégrale utilisée depuis déja deux siécles avant lui.
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La régle de dérivation en chaine se généralise aisément
au calcul différentiel a plusieurs variables. Pour un champ
scalaire ¢ défini sur un espace sous-jacent & plusieurs di-
mensions elle devient

o6 oxXv  0¢
XN £ X)XV

ou, en utilisant la convention de sommation,

0o oxXv 0¢

(X (X XV

Simplifions encore & ’aide des notations abrégées d,¢ pour
% et 0:L¢ pour ag(i(é)u Nous obtenons

oxXv

Soyons plus général et remplagons (%(b par B,,. L’équation
4.21 devient axv

o

h T ) B, (4.22)

Examinons un instant les équations 4.19 et 4.22 qui spé-
cifient la fagon de passer respectivement de A* a (A")* et
de B, a B;/r Réécrivons-les I'une au dessus de 'autre pour
faciliter leur comparaison

O(X)H

Ay — v
(4) oxXv 4
190,44
1o
By = A(X")r B,

On voit deux différences.
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a) La premieére différence est que dans la premiére équa-
tion les indices grecs sur A ou A’ — qui listent leurs
composantes — sont en position supérieure, tandis
que dans la seconde équation ceux sur B ou B’ sont
en position inférieure. Cette différence de notation
semble n’avoir aucune importance, mais en fait elle
en a : elle est utilisée pour signifier quelque chose,
qui va devenir clair dans un instant.

b) La seconde différence concerne les coefficients déri-
vées partielles. Dans 1’équation du haut on a les dé-
rivées partielles de X’ par rapport a X, tandis que
dans celle du bas on a les dérivées partielles de X
par rapport a X'.

Clairement les A" et les B,, sont deux sortes différentes de
quadrivecteurs qui se transforment de maniére différente
pour passer du repére sans prime au repére avec prime. En
fait ceux qu’on avait considérés jusqu’a présent étaient du
type AH.

Les quadrivecteurs qui se transforment comme A*, ¢’est-
a-dire selon I’équation 4.19 sont dits contravariants. Et les
quadrivecteurs qui se transforment comme B,,, c’est-a-dire
selon l’équation 4.22, sont dits covariants. Vous pouvez
aussi dire informellement si vous préférez "quadrivecteurs
avec indice en haut" et "quadrivecteurs avec indice en bas".

D’onl viennent les termes contravariants et covariants ? Cela
veut dire respectivement "qui se transforment contraire-
ment & la base" et "qui se transforment comme la base".
Pour le comprendre pensons & deux bases dans ’espace. Peu
importe le nombre de dimensions, une seule suffit. Consi-
dérons donc un espace (1 + 0), c’est-a-dire juste un axe
spatial. Supposons que le vecteur de base prime soit le vec-

42



teur de base sans prime divisé par 10. Alors dX'/dX = 10.
Et pour passer de A a A’ il faut multiplier A par 10. On
dit donc que A est contravariant, car il varie contrairement
a la base.

Maintenant regardons comment B se transforme. Pour
passer de B a B’ il faut diviser B par 10. On dit donc que
B est covariant, car il se transforme comme la base.

D’une maniére générale tous les vecteurs habituels (po-
sition, vitesse, accélération...) sont contravariants. Tandis
que le gradient est un exemple de vecteur covariant. Cer-
tains auteurs objectent d’appeler le gradient un vecteur, et
I’appellent un covecteur.

Retournons a la transformation de Lorentz. Dans I'expres-
sion 4.17, j’avais listé les dérivées partielles des composantes
avec prime par rapport aux composantes sans primes. Nous
pouvons faire de méme pour les dérivées partielles des com-
posantes sans prime par rapport aux composantes avec prime.
C’est particuliérement simple a établir. Il suffit d’observer
que si le train va a la vélocité v dans le repére de la gare,
alors la gare va a la vélocité —v dans le repére du train.
Donc il suffit de changer le signe de v dans ’expression
4.17. On obtient

ox°
(f)(X/)O =7
0x0

8(X')1 = vy
ox1

G(X’)O = vy
oxt
8(X’)1 =7
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Et voici les régles de transformations pour les composantes
d’un quadrivecteur covariant :

By = ~Boy+vyBy
(4.23)
B, = vyBy+ B

Jetons de nouveau un ceil & 'espace vectoriel des quadri-
vecteurs contravariants. Nous avons déja vu des exemples
de quadrivecteurs contravariants comme les X*, c¢’est-a-dire
les déplacement de O au point de coordonnées X*. Le dé-
placement différentiel entre deux points proches, dX*, est
aussi un quadrivecteur contravariant. Si on multiplie un
quadrivecteur contravariant par un scalaire (c’est-a-dire un
invariant), le résultat est encore un quadrivecteur contra-
variant car les invariants sont complétement passifs dans
une transformation de référentiel. Nous avons déja vu que
le temps propre dr est un invariant, et donc la quantité
dX*/dr, qui est la quadrivitesse, est un quadrivecteur con-
travariant :

dXH
Ut =
dr

Généralement quand on parle d’un quadrivecteur, sans pré-
ciser 8’il est contravariant ou covariant, on parle d’un qua-
drivecteur contravariant.

Le tableau 4.1 récapitule ce qu’on a appris sur les sca-
laires et les quadrivecteurs contravariants. Un exemple de
champ AP avec ces propriétés est obtenu a partir d’un
fluide qui remplirait tout I’espace-temps. En chaque point
du fluide, il y a une quadrivitesse ainsi qu’une vélocité or-
dinaire a trois dimensions. La quadrivitesse est notée par
exemple UX(t, X*). Si le fluide s’écoule, la vélocité peut étre
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différente en différents endroits. La quadrivitesse du fluide
est un champ vectoriel sur I'espace-temps. Puisque c’est
une quadrivitesse (c’est-a-dire le quadrivecteur contrava-
riant dX* divisé par le champ scalaire d7) c’est automati-
quement un quadrivecteur contravariant. U* se transforme
exactement comme A* dans la tableau 4.1.

Champ Transformation Exemple
Scalaire :  Méme valeur Température
¢t x") = o(t,x) Temps propre
Vectoriel :  Transformation de Lorentz Déplacements
(AN = HA? — pyAl XH dXH
(AN = —pyA" 4 AL 4-vecteurs
( A/)2 — A2
( A/)?) — A3

Tableau 4.1 : Transformations de champs scalaires et quadrivec-

toriels contravariants.

Comme on l'a vu, pour les quadrivecteurs covariants,
I’indice est noté en position basse. Et pour les équations de
transformation du référentiel sans prime vers le référentiel
avec prime, il suffit de changer v en —v (équation 4.23) dans
la transformation de Lorentz. Le premier exemple que 1'on
a rencontré est le gradient relativiste d’un champ scalaire.

A partir d’'un quadrivecteur on peut faire un scalaire. On
'a déja fait quand nous avons construit le scalaire dr? a
partir du quadrivecteur dX* :

dr? = dt* — da? — dy® — d=?

Nous pouvons suivre la méme procédure avec n’importe quel
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quadrivecteur. Si A" est un quadrivecteur, alors la quantité
(A%)% = (A1)? — (A%)% — (4%)°

est un scalaire exactement pour les mémes raisons. C’est
laissé comme exercice.

Nous venons de voir comment fabriquer un scalaire & partir
d’un quadrivecteur, et donc aussi un champ scalaire & par-
tir d’'un champ quadrivectoriel. C’est simplement la méme
opération en chaque événement de ’espace-temps.

Voyons une derniére fois l'opération opposée dans un
cadre général, c’est-a-dire construire un champ de quadri-
vecteurs & partir d’'un champ scalaire. On fait cela en diffé-
renciant le champ scalaire par rapport aux quatre compo-
santes de temps et d’espace. Ensemble, ces quatre dérivées
partielles forment un quadrivecteur covariant. Si le champ
scalaire est ¢, son gradient est

3¢_<8¢ 9 99 3¢>

OXr  \9X0 9X1’ 9X2’ 9X3

Insistons : ¢’est un quadrivecteur covariant. Quand on le re-
présente avec une lettre, on place 'indice en position basse,
par exemple B,,. Et il est plaisant de noter que c’est déja le
cas de I'indice u dans les dérivées partielles, qui est en posi-
tion haute mais au dénominateur, ce qu’on peut considérer
comme en position basse au numérateur. Et ces notations
s’avérent cohérentes.
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4.4.3 Construction d’un lagrangien rela-
tiviste

Nous avons maintenant tous les outils nécessaires pour cons-
truire des lagrangiens relativistes. Nous savons comment les
choses se transforment '3 quand on change de référentiel, et
nous savons construire des scalaires invariants a partir de
quadrivecteurs et d’autres objets. Comment construit-on
un lagrangien? C’est simple. Le lagrangien lui-méme — la
quantité que nous calculons en chaque point ¢ d’une tra-
jectoire possible et multiplions par dt, ou en chaque point
(t, =, y, z) et multiplions par le petit volume dt dx dy dz
sur ’espace sous-jacent d’un champ possible, puis sommons
pour obtenir une intégrale d’action — ce lagrangien doit res-
ter invariant dans tous les référentiels. En d’autres termes,
le lagrangien doit étre un champ scalaire.

C’est la seule contrainte fondamentale qui existe sur la
construction d’un lagrangien. On se rappelle que l’existence
du lagrangien est un des principes fondamentauz de la phy-
sique, donc il ne fait pas l'objet de discussions. Ensuite le
lagrangien doit simplement conduire & des résultats cohé-
rents et significatifs. C’est ainsi qu’on avait trouvé que le
lagrangien d’une particule était non pas son énergie ciné-
tique K plus son énergie potentielle V' mais K — V (Vo-
lume 1, pp 119-123). Ce dernier conduisait aux équations
de Newton, donc il était acceptable. Et du reste, nous ne
I’avons pas montré mais c’était essentiellement le seul pos-
sible. Nous allons procéder de la méme fagon pour trouver
le lagrangien d’un champ relativiste.

13. Plus précisément, si "les choses" dont on parle ont une existence
intrinséque, comme les événements ou les quadrivecteurs de 1’espace-
temps, nous savons comment leurs représentations se transforment
d’un référentiel & 'autre.
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Nous prenons un champ ¢(¢, X*) et considérons tous les
champs scalaires possibles qu’on peut construire & partir de
¢. Ces champs scalaires sont des candidats pour le lagran-
gien dans le probléme considéré.

Regardons quelques exemples. Bien str, le champ ¢
étant lui-méme un scalaire dans cet exemple, c’est un can-
didat. Mais toute fonction de ¢ ’est aussi. Si tout le monde
est d’accord sur la valeur en chaque événement de ¢, tout
le monde sera d’accord sur la valeur de ¢, ¢3, sin ¢, sinh ¢,
etc. Par exemple le potentiel de champ V' (¢) est un champ
scalaire fonction de ¢ et donc un candidat pour faire partie
du lagrangien. En fait on a déja vu souvent V' (¢) apparaitre
dans le lagrangien.

Quels autres ingrédients pourrions-nous utiliser 7 Cer-
tainement nous voulons inclure les dérivées du champ, sans
quoi notre théorie des champs serait triviale et sans intérét.
Nous devons simplement nous assurer qu’elles entrent en
jeu de telle sorte que le lagrangien reste bien un champ sca-
laire. C’est facile. Tout d’abord nous utilisons les dérivées
partielles du champ pour construire le quadrivecteur

og H

0X
Ensuite, nous utilisons ces quatre composantes pour cons-
truire le champ scalaire que nous connaissons

90N® _ (00" _(90\" _ (99)°

ot ox oy 0z
Voila une expressoion non-triviale qui a sa place dans un
lagrangien £. Quoi d’autre utiliser 7 On peut multiplier

par une constante. On peut méme multiplier par n’importe
quelle fonction d’un champ scalaire. Multiplier deux choses
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invariantes en produit une troisiéme qui est invariante aussi.
Par exemple, ’expression

(5) - (5) - (o) - (32) [ o

serait un lagrangien légal.

Ce lagrangien commence & étre un peu compliqué, et
nous n’allons pas le considérer pour l'instant. Mais il est
invariant par transformation de Lorentz et forme donc un
champ scalaire candidat.

Nous pourrions méme faire quelque chose d’encore plus
laid. En principe, nous pourrions utiliser des dérivées d’ordre
supérieur si nous parvenions a batir avec elles un champ
scalaire. Mais cela nous entrainerait au dela des limites de
la mécanique classique. Dans le cadre de la mécanique clas-
sique, nous pouvons utiliser des fonctions des coordonnées
et leurs dérivées partielles d’ordre un. Pour une particule
sur ’espace sous-jacent consistant seulement en ’axe tem-
porel c’est ce que l'on a noté

L($(t), 6(t))

Des puissances supérieures des dérivées premiéres sont ac-
ceptables, mais des dérivées d’ordre supérieur ne le sont
pas.

Ainsi en théorie de la relativité, si nous voulons rester
dans le cadre de la physique standard, nous aurons dans
le lagrangien des dérivées partielles d’ordre un par rapport
au temps et par rapport a l’espace, et des puissances de
celles-ci, mais pas de dérivées d’ordre supérieur.
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4.4.4 Emploi du lagrangien

Malgré les restrictions imposées par la mécanique classique
et ’exigence que le lagrangien soit Lorentz-invariant, nous
avons une liberté considérable dans le choix du lagran-
gien avec lequel travailler. Examinons plus attentivement
celui-ci

e[ () - () - G- ()]

C’est essentiellement le méme lagrangien que dans 1’équa-
tion 4.7, ot 'on a réintroduit ¢ pour étre en unités conven-
tionnelles, et ou V(¢) a une expression spécifique. Vous
pouvez maintenant voir pourquoi j’'avais choisi ce lagran-
gien pour notre exemple non-relativiste de la section 4.3.1.

Le facteur % n’est rien de plus qu’une convention sans
signification physique. C’est le méme facteur % qui apparait
dans I’énergie cinétique ordinaire %va. Nous aurions pu
prendre mv? & la place. Si nous faisions cela, cependant,
notre masse serait celle de Newton divisée par 2.

Dans le chapitre 1, nous avons vu qu’une transforma-
tion de Lorentz générale est équivalente & une combinaison
de rotations spatiales rigides et d’une transformation de
Lorentz simple le long de ’axe des x. Nous avons montré
que D'expression 4.24 est invariante dans une transforma-
tion de Lorentz simple. Est-elle invariante par une rotation
rigide des axes spatiaux? Oui, car la partie spatiale dans
I’expression 4.24 est la somme des carrés des composantes
d’un 3-vecteur ordinaire. C’est le carré d’une longueur qui
ne change pas dans une rotation. Cela établit que le lagran-
gien 4.24 est invariant par n’importe quelle transformation
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de Lorentz générale.

Le lagrangien 4.24 conduit & I'une des plus simples des
théories classiques des champs.

L’équation d’Euler-Lagrange appliquée au lagrangien
4.24 produit une équation analogue & celle obtenue & partir
de I'équation 4.7. Il n’est pas difficile, en suivant la méme
procédure que précédemment, d’arriver a

19% 9% 0% ¢
Zor o o o= HO=0 (%)

C’est une équation d’onde particulierement simple car elle
est linéaire. Le champ et ses dérivées n’apparaissent qu’a la
puissance un. I n’y a pas de terme en ¢?, ou ¢ multiplié par
une dérivée de ¢. Par conséquent si on a deux solutions ¢;
et ¢9, toute combinaison linéaire de ces deux-la est encore
une solution.

Nous pouvons obtenir un champ encore plus simple en
fixant p = 0. 1l satisfait alors ’équation d’onde

10% 0% 0% 0%
2otz dx2  0y2 922 0 (4.26)

4.4.5 Résumé des champs classiques

Nous disposons désormais d’une procédure pour développer
une théorie classique des champs. Notre premier exemple
était un champ scalaire, mais la méme technique s’applique
aussi & un champ vectoriel ou méme un champ tensoriel.
A partir du champ se figurer tous les scalaires qu’on peut
fabriquer avec lui-méme et ses dérivées d’ordre un. Une fois
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tous les scalaires listés et caractérisés, construire un lagran-
gien & partir de fonctions de ces scalaires, par exemple des
sommes de termes. Ensuite, appliquer les équations d’Euler-
Lagrange. Cela revient a écrire les équations de mouvement
du champ, ou les équations de champ de propagation d’une
onde, ou quoi que ce soit d’autre que la théorie de champ
en considération est supposée décrire. L’étape suivante est
d’étudier les équations de mouvement obtenues.

Les théories classiques des champs doivent étre conti-
nues. Un champ qui ne serait pas continu aurait des dérivées
infinies, et par conséquent une action infinie. Il aurait aussi
une énergie infinie. Nous aurons plus & dire sur 1’énergie
dans le chapitre suivant.

4.5 Champs et particules — un avant gotit

Pour clore ce chapitre, je voudrais faire quelques remarques
sur la relation entre les particules et les champs — pas dans
un cadre quantique. Je voudrais seulement dans un cadre
classique parler de l'interaction entre les particules ordi-
naires et les champs classiques. Si nous avions travaillé sur
les lois de I’électrodynamique au lieu d’étudier un simple
champ scalaire, j’aurais pu vous montrer comment les par-
ticules chargées interagissent avec un champ électromagné-
tique. Nous ne 'avons pas encore fait. Mais comment une
particule pourrait-elle interagir avec un champ scalaire ¢ 7
En quoi la présence d’un champ scalaire pourrait-elle affec-
ter le mouvement d’une particule ?

Pensons au lagrangien d’une particule en mouvement
en présence d'un champ préétabli. Supposons que quelqu’un
ait résolu les équations du mouvement, et que nous sachions
que le champ ¢(t,x) est une certaine fonction spécifice du
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temps et de l'espace. La particule pourrait étre couplée
au champ, d’une maniére analogue a une particule chargée
dans un champ électromagnétique. Comment la particule se
déplace-t-elle 7 Pour répondre & cette question, retournons
4 la mécanique d’une particule en présence d’un champ.
Nous avons déja écrit un lagrangien pour une particule.
C’était —mdr, car dr est essentiellement la seule quantité
invariante disponible. L’intégrale d’action était

A=-m / dr (4.27)

Pour obtenir les solutions non-relativistes correctes pour
des vélocités faibles, nous avons trouvé qu’il fallait le signe
moins devant l'intégrale, et que le paramétre m se com-
portait comme une masse non-relativiste. En utilisant la
relation dr? = dt? — dx?, nous avons réécrit cette intégrale
sous la forme

A= —m/\/dtQ—d:U2

ou dx représente un infinitésimal dans toutes les directions
spatiales. Ensuite nous avons factorisé dt de la maniére sui-
vante

dz\ 2
A=— dty/1— | —
o fanfi- (%)

Le ratio dz/dt sous la racine carrée est la vélocité v, donc
I’action est encore

A:—m/dt\/l—v2
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Nous avons ensuite développé la quantité v/1 — v2 en série
entiére et utilisé 'approximation fournie par ses deux pre-
miers termes 1 et —v?/2 (équation 3.18) valable quand v
est trés petite 1.

Nous avons trouvé que le lagrangien —m + mov?/2, qui
peut étre simplifié en mv?/2 car une constante additive
dans un lagrangien ne joue aucun role, était celui avec lequel
nous sommes familiers pour une particule ordinaire libre,
c’est-a-dire quand il n’y a pas de champ de forces créant
une énergie potentielle.

Mais le nouveau lagrangien est relativiste. Et nous vou-
lons regarder la particule couplée & un champ.

Que pouvons-nous faire a ce lagrangien relativiste pour
représenter le fait que la particule soit couplée avec un
champ ? Pour que le champ affecte la particule, il faut que le
champ lui-méme apparaisse quelque part dans le lagrangien.
Il faut que nous I'insérions d’une maniére qui soit Lorentz-
invariante. En d’autres termes, nous devons construire un
scalaire a partir du champ. Comme nous ’avons vu précé-
demment, il y a de nombreuses facons d’y parvenir, mais
une action trés simple que nous pourrions essayer est celle-ci

A:—/[m—i-d)(t,:z:)]dr

soit
A:—/[m+¢(t,x)] V1= dt (4.28)

Cela correspond au lagrangien

L=—[m+¢(t,z)]V1-—v? (4.29)

14. Et nous avons utilisé implicitement le fait que deux lagrangiens
proches conduisent & deux actions proches.
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Ceci est I'une des choses les plus simples que 'on puisse
considérer, mais il y a beaucoup d’autres possibilités. Par
exemple, dans le lagrangien ci-dessus, on pourrait remplacer
@(t, z) par son carré, ou n'importe quelle autre fonction de
¢(t, ). Pour le moment, nous allons utiliser le lagrangien
donné par 'expression 4.29, et 'intégrale d’action corres-
pondante de I’équation 4.28.

L’équation 4.29 est donc un lagrangien possible pour
une particule se déplagant dans un champ préétabli. Main-
tenant nous pouvons nous demander : comment la particule
se déplace-t-elle dans ce champ? C’est similaire a se de-
mander comment une particule chargée se déplace dans un
champ électrique ou un champ magnétique. On écrit le la-
grangien pour la particule dans le champ électrique ou ma-
gnétique; on ne se soucie pas de savoir comment le champ
est arrivé la. A la place, on écrit simplement le lagrangien
puis les équations d’Fuler-Lagrange. Nous allons creuser un
peu cet exemple. Mais avant de la faire, je souhaiterais si-
gnaler une caractéristique intéressante de ’équation 4.29.

4.5.1 Le champ mystére

Supposons que, pour une raison ou pour une autre, le champ
¢(t,x) ait tendance a migrer vers une constante spécifique
autre que zéro. Mettons qu’il "aime" étre a une valeur parti-
culiére non nulle. Dans ce cas, ¢(t, z) serait constant ou ap-
proximativement constant, malgré sa dépendance formelle
a t et x. Le mouvement de la particule aurait alors exac-
tement la méme allure que si la particule avait la masse
m + ¢. Reformulons cela :
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Dans le champ scalaire ¢ approrimativement constant, la
particule de masse m se comporterait comme si elle avait
la masse m + ¢.

Ceci est 'exemple le plus simple d’un champ scalaire cau-
sant un décalage apparent de la masse d’'une particule.

Il y a dans la nature un champ qui ressemble beau-
coup a celui de cet exemple. Devinez-vous lequel 7 Pour
vous mettre sur la voie : il a fait beaucoup parler de lui en
juillet 2012 au CERN a Genéve.

Notre champ scalaire a beaucoup de ressemblance avec
le champ de Higgs 1°. Dans notre exemple, un décalage dans
la valeur du champ scalaire cause un décalage dans la masse
des particules. Notre exemple n’est pas exactement le méca-
nisme de Higgs, mais il en est trés proche. Si une particule
démarre avec une masse nulle et est couplée & un champ
de Higgs, ce couplage a pour effet de décaler la masse de la
particule vers une valeur non nulle. Ce décalage est en gros
ce que veulent dire les gens quand ils disent que le champ
de Higgs confére a la particule sa masse.

4.5.2 Encore un peu de lagrangien

Jetons encore un ceil aux équations d’Euler-Lagrange dans
notre exemple de champ scalaire. Nous n’allons pas pousser
les calculs jusqu’au bout car ils deviennent rapidement in-
extricables. Nous allons juste voir le cheminement général.

15. En 1964, Peter Higgs, Francois Englert et Robert Brout, ainsi
que plusieurs autres physiciens, prédirent ’existence d’une particule
appartenant & la famille des bosons, résultant d’'un mécanisme simi-
laire dans un cadre quantique. Au CERN, 48 ans plus tard, une ex-
périence réalisée avec le LHC (Large Hadron Collider) confirma leur
prédiction.
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Pour simplifier nous considérerons que nous sommes dans
un espace-temps sous-jacent de dimension (1+1), c’est-a-
dire un seul axe spatial en plus de 'axe temporel. Reco-
pions notre lagrangien de 1’équation 4.29 ol v est remplacé
par son expression .

L=—-[m+¢(t,z)] V1—1?

La premiére étape quand on applique les équations d’Euler-
Lagrange, en vue d’arriver & une équation différentielle sur
¢(t,z) qui déterminera le mouvement, est de calculer la
dérivée partielle de £ par rapport & . Rappelez-vous que
calculer la dérivée partielle veut dire regarder le taux de
variation de £ quand & varie alors que toutes les autres va-
riables indépendantes déterminant £ sont maintenues fixes.
Dans ce cas, nous considérons 'expression entre crochets
comme constante car elle n’a pas de dépendance explicite
a . En revanche I'expression v/1 — 22 dépend bien explici-
tement de #. Quand nous prenons la dérivée partielle de £
nous obtenons
oL [m+ ¢(t,z) | &

= = 4.
O 1—a (4.30)

Cette expression devrait avoir un air familier. Nous avons
obtenu un résultat presque identique dans le chapitre 3
quand nous avons calculé I'impulsion d’une particule relati-
viste, équation 3.30. La seule différence ici est le terme sup-
plémentaire ¢(t, x) ajouté a l'intérieur des crochets au nu-
mérateur. Cela renforce I'idée que l'expression [ m+¢(t, x) |
se comporte comme une masse dépendant de la position.
Toujours avec les équations d’Euler-Lagrange, 1’étape
suivante est de différentier par rapport au temps ’expres-
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sion obtenue dans ’équation 4.30. Nous allons juste indi-
quer cette opération de maniére symbolique en écrivant

doL  d [m+¢(t,x)] i

dt i~ dt N

C’est le membre de gauche de I’équation d’Euler-Lagrange.
Regardons a présent le membre de droite

%
ox

Puisque nous voulons différencier partiellement par rapport
& x, nous nous demandons si £ dépend explicitement de x.
La réponse est affirmative, car ¢(t,z) dépend de z, et il
se trouve que c’est le seul endroit ot £ dépend de x. La
dérivée partielle est donc

oL _% P!
Oz 1-a

oz

Et 'équation d’Euler-Lagrange devient

d [m+otx)]i 0 .
= — - _%\/ﬁ (4.31)

C’est I’équation différentielle que satisfait le mouvement du
champ. Si on essaie de calculer la dérivée temporelle du coté
gauche on arrive & une expression repoussante. Donc nous
allons nous arréter ici.

Comme exercice le lecteur ou la lectrice peut réintro-
duire le facteur ¢ dans I’équation 4.31, et méme voir com-
ment le champ se comporte & la limite non-relativiste quand
la vélocité T est petite par rapport a c. Nous aurons plus a
dire sur la question dans le chapitre suivant.
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